[1]郭晨光,黄 思*,危逸枫,等.双塔设备在流动载荷作用下的振动测量和分析[J].江西师范大学学报(自然科学版),2020,(04):335-340+344.[doi:10.16357/j.cnki.issn1000-5862.2020.04.02]
 GUO Chenguang,HUANG Si*,WEI Yifeng,et al.The Vibration Measurement and Analysis of Twin-Tower under Flow Loads[J].Journal of Jiangxi Normal University:Natural Science Edition,2020,(04):335-340+344.[doi:10.16357/j.cnki.issn1000-5862.2020.04.02]
点击复制

双塔设备在流动载荷作用下的振动测量和分析()
分享到:

《江西师范大学学报》(自然科学版)[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2020年04期
页码:
335-340+344
栏目:
流体算法与应用
出版日期:
2020-08-10

文章信息/Info

Title:
The Vibration Measurement and Analysis of Twin-Tower under Flow Loads
文章编号:
1000-5862(2020)04-0335-06
作者:
郭晨光1黄 思1*危逸枫1汪文锋2叶伟文2李茂东2
1.华南理工大学机械与汽车工程学院,广东 广州 510641; 2.广州特种承压设备检测研究院,广东 广州 510663
Author(s):
GUO Chenguang1HUANG Si1*WEI Yifeng1WANG Wenfeng2YE Weiwen2LI Maodong2
1.School of Mechanical and Automotive Engineering,South China University of Technology,Guangzhou Guangdong 510641,China; 2.Guangzhou Special Pressure Equipment Inspection and Research Institute,Guangzhou Guangdong 510663,China
关键词:
双塔设备 现场实测 应变位移 流固耦合
Keywords:
twin-tower on-site measurement strain and displacement fluid-solid coupling
分类号:
TE 962
DOI:
10.16357/j.cnki.issn1000-5862.2020.04.02
文献标志码:
A
摘要:
选取某石化企业的双塔设备作为研究对象,将现场实测与流固耦合计算相结合进行振动分析,其中稳定塔高33 m,分馏塔高24 m,塔内气相介质为天然气,液相为烯烃.采用风速风向仪对塔设备上游的风速风向进行测量,用电阻式应变片测量稳定塔的轴向应变,用磁电式振动传感器测量塔设备振动速度和位移,得到了在内、外流动载荷作用下双塔设备的动态响应和固有频率.结果表明:该文所采用的流固耦合计算方法可有效评估塔设备的振动情况,为多塔设备的安全运行提供参考.
Abstract:
In this study,the on-site measurement and fluid-solid coupling calculation are performed for a chemical twin-tower with heights of 33 m and 24 m in a petrochemical company to analysis its vibration.The gas phase medium is natural gas and the liquid phase medium is olefin.The anemometer is used to measure the wind speed and direction upstream of the equipment,the resistance strain gauges are used to measure the axial strain of the stabilizing tower,the magnetoelectric vibration sensors are used to measure the vibrating speed and displacement of the twin-tower.Dynamic response and natural frequency of twin-tower under internal and external flow loads are obtained.The result shows that the fluid-structure coupling calculation method used in this paper can effectively evaluate the vibration and provide a reference for the safe operation of the multi-tower equipment.

参考文献/References:

[1] 胡正明.化工设备机械基础[M].大连:大连理工大学出版社,1994:117-121.
[2] Lǖ Shuxiang,Mi Zhentao,Wang Yaquan,et al.Experimental investigation and simulation of a gas-agitated sieve plate column[J].Chemical Engineering and Technology,2004,27(8):903-908.
[3] 牛伟建.高耸板式塔的风振响应分析[D].秦皇岛:燕山大学,2015.
[4] 李庆炎.塔设备的风诱导振动[J].石油化工设备技术,1991,12(1):3-8.
[5] 苏文献,金玉龙,韩超.单塔风诱导振动破坏分析[J].上海理工大学学报,2013,35(4):391-396.
[6] 韩瑜.流体流动对筛板稳定性影响的研究[D].天津:天津大学,2013.
[7] Belloli M,Rosa L,Zasso A.Wind loads and vortex shedding analysis on the effects of the porosity on a high slender tower[J].Journal of Wind Engineering and Industrial Aerodynamics,2014,126:75-86.
[8] Waddington W.Vibration excitation of sieve tray columns by bubbling[D].Sheffield:University of Sheffield,1974.
[9] Waddington W,Kohler H K,Brown D J.Vibration excitation of sieve plate columns by bubbling[J].Transactions of the Institution of Chemical Engineers,1974,52(4):381-383.
[10] Priestman G H,Brown D J.Flow-induced vibration and damage in sieve-tray columns[J].Chemical Engineering Communications,1988,63(1):181-192.
[11] 陈俊民,范秀昌.高塔受风诱导共振工程计算[J].化工设备与管道,1992(1):14-17.
[12] 王春义,范而奎,赵子明,等.焦化装置分馏塔振动故障分析及处理措施[J].中外能源,2009,14(1):84-86.
[13] 刘东.大高径比塔设备的结构强度和诱导振动分析[D].北京:北京化工大学,2017.
[14] 徐乐,谭蔚,贾占斌,等.高耸塔器风致振动的现场实测与疲劳分析[J].化工机械,2017,44(6):686-689,704.
[15] 汪文锋,黄思,郭晨光,等.风载荷作用下的塔群瞬态绕流及受力分析[J].江西师范大学学报:自然科学版,2019,43(3):231-236.
[16] 汪文锋,黄思,郭晨光,等.塔设备在内部流动载荷作用下的振动分析[J].压力容器,2019,36(11):19-24,5.
[17] 中国机械工业联合会.钢制压力容器:分析设计标准:JB 4732—1995(2005年确认)[S].北京:机械工业出版社,1995:13-57.
[18] Schlichting H,Gersten K.Boundary-layer theory[M].New York:McGraw-Hill,1979:16-24.
[19] Roshko A.On the development of turbulent wakes from vortex streets[J].Naca Tr,1954,1191:34-39.
[20] Kim H J,Durbin P A.Observations of the frequencies in a sphere wake and of drag increase by acoustic excitation[J].Physics of Fluids,1988,31(11):3260-3265.
[21] 中华人民共和国住房和城乡建设部.石油化工钢制设备抗震设计标准:GB/T 50761—2018[S].北京:中国计划出版社,2018:25-89.
[22] 中华人民共和国住房和城乡建设部.化学工业建(构)筑物抗震设防分类标准:GB 50914—2013[S].北京:中国计划出版社,2013:59-92.
[23] 李东旭.高等结构动力学[M].2版.北京:科学出版社,2010:56-58.

备注/Memo

备注/Memo:
收稿日期:2020-02-25
基金项目:国家自然科学基金(21878102)和广东省质监局科技(2017CT27)资助项目.
通信作者:黄 思(1962-),男,广西南宁人,教授,博士,博士生导师,主要从事流体机械及工程的研究.E-mail:huangsi@scut.edu.cn
更新日期/Last Update: 2020-08-10