[1]陈明月,周 行*.埋嵌型镍铁合金纳米颗粒的制备及其应变场研究[J].江西师范大学学报(自然科学版),2020,(04):373-377+423.[doi:10.16357/j.cnki.issn1000-5862.2020.04.08]
 CHEN Mingyue,ZHOU Hang*.The Preparation and Strain Field Study of Embedded Ni-Fe Alloy Nanoparticles[J].Journal of Jiangxi Normal University:Natural Science Edition,2020,(04):373-377+423.[doi:10.16357/j.cnki.issn1000-5862.2020.04.08]
点击复制

埋嵌型镍铁合金纳米颗粒的制备及其应变场研究()
分享到:

《江西师范大学学报》(自然科学版)[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2020年04期
页码:
373-377+423
栏目:
物理学
出版日期:
2020-08-10

文章信息/Info

Title:
The Preparation and Strain Field Study of Embedded Ni-Fe Alloy Nanoparticles
文章编号:
1000-5862(2020)04-0373-05
作者:
陈明月周 行*
江西师范大学物理与通信电子学院,江西 南昌 330022
Author(s):
CHEN MingyueZHOU Hang*
College of Physics and Communication Electronics,Jiangxi Normal University,Nanchang Jiangxi 330022,China
关键词:
镍铁合金 纳米颗粒 有限元分析 应变场分布
Keywords:
Ni-Fe alloy nanoparticles finite element analysis strain field distribution
分类号:
O 482.54
DOI:
10.16357/j.cnki.issn1000-5862.2020.04.08
文献标志码:
A
摘要:
通过脉冲激光沉积系统和快速热退火工艺,制备了在Al2O3薄膜中生长的埋嵌型镍铁合金纳米颗粒; 再通过有限元分析方法,发现退火温度不仅对埋嵌型镍铁合金纳米颗粒的尺寸大小的影响非常显著,而且还会改变镍铁合金纳米颗粒所受到的应变场分布,使纳米颗粒的相关性能得到进一步提升.因此,探究退火温度对埋嵌型镍铁合金纳米颗粒所受到的应变场分布造成的影响有着十分重要的研究意义,同时也为镍铁合金纳米颗粒的机械性能以及软磁性能的调控方法提供了一条崭新的思路.
Abstract:
Through the pulse laser deposition system and rapid thermal annealing process,the embedded Ni-Fe alloy nanoparticles grown in the Al2O3 film are prepared.Through the finite element analysis,it is also found that the annealing temperature not only has a significant effect on the size of embedded Ni-Fe alloy nanoparticles,but also can change the strain field distribution of Ni-Fe alloy nanoparticles,so that the related properties of nanoparticles can be further improved.Therefore,it is of great significance to explore the effect of annealing temperature on the strain field distribution of embedded Ni-Fe alloy nanoparticles,and it also provides a new way to control the mechanical properties and soft magnetic properties of Ni-Fe alloy nanoparticles.

参考文献/References:

[1] Zihlmann S,Makk P,Vaz C A F,et al.Hexagonal boron nitride as an atomically thin oxidation barrier for ferromagnetic nano structures[EB/OL].[2019-12-17].https://arxiv.org/abs/1509.03087v1.
[2] Kim J,Rong Chuanbing,Lee Y,et al.From core/shell structured FePt/Fe3O4/MgO to ferromagnetic FePt nanoparticles[J].Chemistry of Materials,2008,20(23):7242-7245.
[3] Lambert C H,Mangin S,Varaprasad B S D Ch S,et al.All-optical control of ferromagnetic thin films and nanostructures[J].Science,2014,345(6202):1337-1340.
[4] Ahmed A,Gajbhiye N S.Intrinsic ferromagnetic behavior in Fe-doped Cu2O octahedra due to cation vacancy defect[EB/OL].[2019-12-17].http://www.essuir.sumdu.edu.ua/bitstream/123456789/37286/1/ahmed_octahedra.pdf.
[5] Baltz V,Sort J,Rodmacq B,et al.Thermal activation effects on the exchange bias in ferromagnetic-antiferromagnetic nanostructures[J].Physical Review B,2005,72(10):104419.
[6] Mohammed Salah E H,Hehn M,Malinowski G,et al.Materials and devices for all-optical helicity-dependent switching[J].Journal of Physics D:Applied Physics,2017,50(13):133002.
[7] Suzuki K,Parsons R,Zang Bowen,et al.Copper-free nanocrystalline soft magnetic materials with high saturation magnetization comparable to that of Si steel[J].Applied Physics Letters,2017,110(1):12407.
[8] Huang Likai,Yuan Zhonghui,Tao Bingshan,et al.Noise suppression and sensitivity manipulation of magnetic tunnel junction sensors with soft magnetic Co70.5Fe4.5Si15B10 layer[J].Jouranl of Applied Physics,2017,122(11):113903.
[9] Li Zhenhua,Truhlar D G.Nanothermodynamics of metal nanoparticles[J].Chemical Science,2014,5(7):2605-2624.
[10] Yen Chunwan,Lin Mengliang,Wang Aiqin,et al.Co oxidation catalyzed by Au-Ag bimetallic nanoparticles supported in mesoporous silica[J].Journal of Physical Chemistry C,2009,113(41):17831-17839.
[11] Zhang Hua,Jin Rongchao,Mirkin C A.Synthesis of open-ended,cylindrical Au-Ag alloy nanostructures on a Si/SiOx surface[J].Nano Letts,2004,4(8):1493-1495.
[12] Linic S,Christopher P,Ingram D B.Plasmonic-metal nanostructures for efficient conversion of solar to chemical energy[J].Nature Materials,2011,10(12):911-921.
[13] Liu Yin,Qin Xiaoying,Qiu Tai.Magnetic properties of nanostructural γ-Ni-28Fe alloy[J].Trans Nonferr Met Soc China,2006,16(6):1370-1373.
[14] Azizi A,Sadrnezhaad S K.Synthesis of Fe-Ni nano-particles by low-temperature hydrogen reduction of mechanically alloyed Ni-ferrite[J].J Alloys Compd,2009,485(1/2):484-487.
[15] Choi W K,Ng V,Ng S P,et al.Raman characterization of germanium nanocrystals in amorphous silicon oxide films synthesized by rapid thermal annealing[J].J Appl Phys,1999,86(3):1398-1403.
[16] Wellner A,Paillard V,Bonafos C,et al.Stress measurements of germanium nanocrystals embedded in silicon oxide[J].J Appl Phys,2003,94(9):5639-5642.
[17] Chew H G,Zheng Feihu,Choi W K,et al.Influence of reductant and germanium concentration on the growth and stress development of germanium nanocrystals in silicon oxide matrix[J].Nanotechnology,2007,18(6):65302.
[18] Ren Wei,Yang Yurong,Diéguez O,et al.Ferroelectric domains in multiferroic BiFeO3 films under epitaxial strains[J].Phys Rev Lett,2013,110(18):187601.
[19] Jin Zuanming,Xu Yue,Zhang Zhengbing,et al.Strain modulated transient photostriction in La and Nb codoped multiferroic BiFeO3 thin films[J].Applied Physics Letters,2012,101(24):242902.
[20] Liu Guirong,Dai Keyang,Nguyen T T.A smoothed finite element method for mechanics problems[J].Computational Mechanics,2007,39(6):859-877.
[21] Levitas V I,Idesman A V,Palakala A K.Phase-field modeling of fracture in liquid[J].J Appl Phys,2011,110(3):33531.
[22] 张求龙,江子雄,袁彩雷,等.埋嵌在超薄Al2O3薄膜中的Ni纳米颗粒在生长过程中的应变场分布[J].中国科学:物理学,力学,天文学,2012,42(7):711-715.
[23] Benabbas T,Androussi Y,Lefebvre A.A finite-element study of strain fields in vertically aligned InAs islands in GaAs[J].J Appl Phys,1999,86(4):1945-1950.
[24] Pei Qingxiang,Lu Cheng,Wang Yunyu.Effect of elastic anisotropy on the elastic fields and vertical alignment of quantum dots[J].J Appl Phys,2003,93(3):1487-1492.
[25] Shin H,Lee W,Yoo Y H.Comparison of strain fields in truncated and un-truncated quantum dots in stacked InAs/GaAs nanostructures with varying stacking periods[J].J Phys Condens Matter,2003,15(22):3689-3699.
[26] Hofmeister H,Dubiel M,Goj H,et al.Microstructural investigation of colloidal silver embedded in glass[J].Journal of Microscopy,1995,177(3):331-336.
[27] Voronkov V V,Falster R.Strain-induced transformation of amorphous spherical precipitates into platelets:application to oxide particles in silicon[J].Journal of Applied Physics,2001,89(11):5965-5971.
[28] Yuan Cailei,Lee P S,Ye Shuangli.Formation,photoluminescence and charge storage characteristics of Au nanocrystals embedded in amorphous Al2O3 matrix[J].Europhys Lett,2007,80(6):67003.

备注/Memo

备注/Memo:
收稿日期:2020-01-22
基金项目:国家自然科学基金(51761017,51661012,51461019)资助项目.
通信作者:周 行(1988-),男,江西南昌人,副教授,博士,主要从事纳米材料研究.E-mail:408958049@qq.com
更新日期/Last Update: 2020-08-10