[1]张洪格,朱 佳*,章永凡.Zn掺杂MoS2的构型、电子结构及电催化析氢性能的理论研究[J].江西师范大学学报(自然科学版),2020,(04):417-423.[doi:10.16357/j.cnki.issn1000-5862.2020.04.14]
 ZHANG Hongge,ZHU Jia*,ZHANG Yongfan.The Theoretical Study on the Configurations,Electronic Structures and Electrocatalytic Hydrogen Evolution of Zn-Doped MoS2[J].Journal of Jiangxi Normal University:Natural Science Edition,2020,(04):417-423.[doi:10.16357/j.cnki.issn1000-5862.2020.04.14]
点击复制

Zn掺杂MoS2的构型、电子结构及电催化析氢性能的理论研究()
分享到:

《江西师范大学学报》(自然科学版)[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2020年04期
页码:
417-423
栏目:
新能源材料研究
出版日期:
2020-08-10

文章信息/Info

Title:
The Theoretical Study on the Configurations,Electronic Structures and Electrocatalytic Hydrogen Evolution of Zn-Doped MoS2
文章编号:
1000-5862(2020)04-0417-07
作者:
张洪格1朱 佳1*章永凡2
1.江西师范大学化学化工学院,江西 南昌 330022; 2.福州大学化学学院,福建 福州 350116
Author(s):
ZHANG Hongge1ZHU Jia1* ZHANG Yongfan2
1.College of Chemistry and Chemical Engineering,Jiangxi Normal University,Nanchang Jiangxi 330022,China; 2.College of Chemistry,Fuzhou University,Fuzhou Fujian 350116,China
关键词:
MoS2 Zn掺杂 电子结构 电催化析氢性能 密度泛函理论
Keywords:
MoS2 Zn doping electronic properties electrocatalytic activity for hydrogen evolution reaction density functional theory
分类号:
O 641
DOI:
10.16357/j.cnki.issn1000-5862.2020.04.14
文献标志码:
A
摘要:
采用密度泛函理论(DFT)方法对二硫化钼(MoS2)完整表面和不同掺杂浓度下过渡金属Zn原子掺杂MoS2表面(Zn-MoS2)的构型、电子结构及其电催化析氢性能进行了研究.研究结果表明:与MoS2完整表面相比,Zn掺杂单层MoS2的氢吸附吉布斯自由能(-0.09 eV)明显减小,接近理想值(约0 eV),表现出优异的析氢催化反应性能.电子结构研究结果表明:Zn掺杂MoS2表面后,体系费米能级附近出现了Zn-3d轨道的带隙态,这表明有效调控了MoS2催化材料的电子结构.在费米能级附近还出现了与Zn原子相邻的S原子的3p轨道的新电子态,可有效增强S-3p轨道和H-1s轨道的重叠,从而提高吸附氢的性能、优化电催化析氢性能.进一步对不同Zn掺杂浓度下Zn-MoS2体系的研究结果表明提高Zn掺杂浓度仍能保持优异的电催化析氢反应性能.该文通过引入不同Zn掺杂浓度的方法,对MoS2电催化剂的电子结构进行调控,从而有效提升电催化析氢反应性能.
Abstract:
The geometrical configurations,electronic structures and the hydrogen evolution performance of molybdenum disulfide(MoS2)and Zn doped molybdenum disulfide(Zn-MoS2)at different doped concentrations are studied by density functional theory(DFT).The results show that after Zn doped molybdenum disulfide,the Gibbs free energy of atomic H adsorption on Zn-MoS2 is significantly decreased to -0.09 eV,which is close to the ideal value(about 0 eV),indicated hydrogen adsorption performance is effectively improved.Analysis of electronic structures show that a new gap state which originates from Zn-3d state appears near the Fermi energy level of the Zn-MoS2,which indicates that the electronic structure of molybdenum disulfide is effectively modulated.There also is a new electronic state of S-3p orbital occurred near the Fermi energy level of the Zn-MoS2,which results in effectively overlapping between the S-3p orbital and the H-1s orbital and further significantly optimizing the hydrogen adsorption performance.Furthermore,the analysis of Zn doped MoS2 at different doping density show that the system can remain excellent catalytic activity for hydrogen evolution reaction.The electronic properties of the MoS2 can be effectively modulated by Zn doping MoS2 at different doping density,and further the electro catalytic activity for hydrogen evolution reaction is improved.

参考文献/References:

[1] Gutiérrez O Y,Singh S,Schachtl E,et al.Effects of the support on the performance and promotion of(Ni)MoS2 catalysts for simultaneous hydrodenitrogenation and hydrodesulfurization[J].ACS Catalysis,2014,4(5):1487-1499.
[2] Jaramillo T F,Jorgensen K P,Bonde J,et al.Identification of active edge sites for electrochemical H2 evolution from MoS2 nanocatalysts[J].Science,2007,317(5834):100-102.
[3] Lauritsen J V,Kibsgaard J,Olesen G H,et al.Location and coordination of promoter atoms in Co- and Ni-promoted MoS2-based hydrotreating catalysts[J].Journal of Catalysis,2007,249(2):220-233.
[4] Zhou Wenda,Chen Mingyue,Guo Manman,et al.Magnetic enhancement for hydrogen evolution reaction on ferromagnetic MoS2 catalyst[J].Nano Letter,2020,20(4):2923-2930.
[5] Ding Qi,Song Bo,Xu Ping,et al.Efficient electrocatalytic and photoelectrochemical hydrogen generation using MoS2 and related compounds[J].Chem,2016,1(5):699-726.
[6] Shi Yi,Zhou Yue,Yang Dongrui,et al.Energy level engineering of MoS2 by transition-metal doping for accelerating hydrogen evolution reaction[J].Journal of the American Chemical Society,2017,139(43):15479-15485.
[7] Ma Yandong,Dai Ying,Guo Meng,et al.Graphene adhesion on MoS2 monolayer:an ab initio study[J].Nanoscale,2011,3(9):3883-3887.
[8] Ma Lianbo,Hu Yi,Zhu Guoyin,et al.In-situ thermal synthesis of inlaid ultrathin MoS2/graphene nanosheets as electrocatalysts for the hydrogen evolution reaction[J].Chemistry of Materials,2016,28(16):5733-5742.
[9] Saab M,Raybaud P.Tuning the magnetic properties of MoS2 single nanolayers by 3d metals edge doping[J].The Journal of Physical Chemistry C,2016,120(19):10691-10697.
[10] Li Guoqing,Zhang Du,Qiao Qiao,et al.All the catalytic active sites of MoS2 for hydrogen evolution[J].Journal of the American Chemical Society,2016,138(51):16632-16638.
[11] Deng Jiao,Li Haobo,Xiao Jianping,et al.Triggering the electrocatalytic hydrogen evolution activity of the inert two-dimensional MoS2 surface via single-atom metal doping[J].Energy and Environmental Science,2015,8(5):1594-1601.
[12] Gao Guoping,Sun Qiao,Du Aijun.Activating catalytic inert basal plane of molybdenum disulfide to optimize hydrogen evolution activity via defect doping and strain engineering[J].The Journal of Physical Chemistry C,2016,120(30):16761-16766.
[13] Deng Jiao,Li Haobo,Wang Suheng,et al.Multiscale structural and electronic control of molybdenum disulfide foam for highly efficient hydrogen production[J].Nature Communications,2017,8:14430.
[14] Kresse G,Hafner J.Ab initio molecular-dynamics simulation of the liquid-metal-amorphous-semiconductor transition in germanium[J].Physical Review B:Condens Matter,1994,49(20):14251-14269.
[15] Kresse G,Furthmüller J.Efficiency of ab-initio total energy calculations for metals and semi-conductors using a plane-wave basis set[J].Computational Materials Science,1996,6(1):15-50.
[16] Blöchl P E.Projector augmented-wave method[J].Physical Review B:Condens Matter,1994,50(24):17953-17979.
[17] Perdew J P,Burke K,Ernzerhof M.Generalized gradient approximation made simple[J].Physical Review Letter,1996,77(18):3865-3868.
[18] Nørskov J K,Bligaard T,Logadottir A,et al.Trends in the exchange current for hydrogen evolution[J].Journal of the Electrochemical Society,2005,152(3):23-26.
[19] Li Huashan,Wang Shanshan,Sawada H,et al.Atomic structure and dynamics of single platinum atom interactions with monolayer MoS2[J].ACS Nano,2017,11(3):3392-3403.
[20] Ling Chongyi,Ouyang Yixin,Shi Li,et al.Template-grown MoS2 nanowires catalyze the hydrogen evolution reaction:ultralow kinetic barriers with high active site density[J].ACS Catalysis,2017,7(8):5097-5102.
[21] Ling Faling,Liu Xiaoqing,Jing Huirong,et al.Optimizing edges and defects of supported MoS2 catalysts for hydrogen evolution via an external electric field[J].Physical Chemistry Chemical Physics,2018,20(41):26083-26090.
[22] Li Hong,Tsai C,Koh A L,et al.Activating and optimizing MoS2 basal planes for hydrogen evolution through the formation of strained sulphur vacancies[J].Nature Materials,2016,15(1):48-53.

备注/Memo

备注/Memo:
收稿日期:2020-03-25
基金项目:国家自然科学基金(21863004),江西省自然科学基金(20192BAB206035)和江西省教育厅科技课题(GJJ170175)资助项目.
通信作者:朱 佳(1984-),女,湖南益阳人,副教授,博士,主要从事复杂固体表/界面体系的电子结构和催化性能的理论研究.E-mail:jia_zhu@jxnu.edu.cn
更新日期/Last Update: 2020-08-10