[1]金 聪,谢建坤*.白粉菌效应蛋白研究进展[J].江西师范大学学报(自然科学版),2020,(05):478-483.[doi:10.16357/j.cnki.issn1000-5862.2020.05.05]
 JIN Cong,XIE Jiankun*.The Recent Progress in Powdery Mildew Effector Proteins[J].Journal of Jiangxi Normal University:Natural Science Edition,2020,(05):478-483.[doi:10.16357/j.cnki.issn1000-5862.2020.05.05]
点击复制

白粉菌效应蛋白研究进展()
分享到:

《江西师范大学学报》(自然科学版)[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2020年05期
页码:
478-483
栏目:
生命科学
出版日期:
2020-10-20

文章信息/Info

Title:
The Recent Progress in Powdery Mildew Effector Proteins
文章编号:
1000-5862(2020)05-0478-06
作者:
金 聪谢建坤*
江西师范大学生命科学学院,江西 南昌 330022
Author(s):
JIN CongXIE Jiankun*
College of Life Sciences,Jiangxi Normal University,Nanchang Jiangxi 330022,China
关键词:
白粉菌 效应蛋白组 致病性 无毒基因
Keywords:
powdery mildew fungus effector proteome pathogenicity avirulence gene
分类号:
S 435
DOI:
10.16357/j.cnki.issn1000-5862.2020.05.05
文献标志码:
A
摘要:
在病原菌与植物的相互作用过程中,病原菌分泌大量效应蛋白帮助其侵染植物,因此效应蛋白一直是植物病理学研究的热点课题.该文基于大量白粉菌效应蛋白的研究成果,就近年来白粉菌效应蛋白的生物信息学预测分析结果、功能效应蛋白鉴定及其作用机理和无毒效应蛋白研究进展等方面进行综述,同时对未来值得重点关注的研究方向进行探讨,以期为白粉菌致病性的研究提供理论参考.
Abstract:
In the interaction between pathogens and plants,pathogens secrete a large number of effector proteins to help them infect plants.Effector proteins play an important role in the process of pathogen infect host,so the study of effector proteins has been a hot spot in plant pathology.Based on the large number of research results of powdery mildew effector proteins,the bioinformatics prediction and analysis results of powdery mildew effector proteins in recent years,the identification of functional effector proteins and their mechanism and the research progress of avirulence proteins are reviewed.At the same time,several important future directions in researches on powdery mildew effector proteins are discussed,which provides theoretical reference for the study of pathogenicity of powdery mildew.

参考文献/References:

[1] Glawe D A.The powdery mildews:a review of the world's most familiar(yet poorly known)plant pathogens[J].Annu Rev Phytopathol,2008,46:27-51.
[2] Wyand R A,Brown J K.Genetic and forma specialis diversity in Blumeria graminis of cereals and its implications for host-pathogen co-evolution[J].Mol Plant Path,2003,4:187-198.
[3] Flor H H.Current status of the gene-for-gene concept[J].Annu Rev Phytopathol,1971,9:275-296.
[4] Lu Xunli,Kracher B,Saur I M,et al.Allelic barley MLA immune receptors recognize sequence-unrelated avirulence effectors of the powdery mildew pathogen[J].Proc Natl Acad Sci USA,2016,113:E6486-E6495.
[5] Saur I M L,Bauer S,Kracher B,et al.Multiple pairs of allelic MLA immune receptor-powdery mildew AVRA effectors argue for a direct recognition mechanism[J].eLife,2019,8:e44471.
[6] Bourras S,McNally K E,Ben-David R,et al.Multiple avirulence loci and allele-specific effector recognition control the Pm3 race-specific resistance of wheat to powdery mildew[J].Plant Cell,2015,27:2991-3012.
[7] Praz C R,Bourras S,Zeng Fansong,et al.AvrPm2 encodes an RNase-like avirulence effector which is conserved in the two different specialized forms of wheat and rye powdery mildew fungus[J].New Phytol,2017,213:1301-1314.
[8] Jones J D,Dangl J L.The plant immune system[J].Nature,2006,444:323-329.
[9] Rajamuthiah R,Mylonakis E.Effector triggered immunity[J].Virulence,2014,5(7):697-702.
[10] Nilsson I M,Heijne A G V.Fine-tuning the topology of a polytopic membrane protein:role of positively and negatively charged amino acids[J].Cell,1990,62(6):1135-1141.
[11] Spanu P D,Abbott J C,Amselem J,et al.Genome expansion and gene loss in powdery mildew fungi reveal tradeoffs in extreme parasitism[J].Science,2010,330:1543-1546.
[12] Wicker T,Oberhaensli S,Parlange F,et al.The wheat powdery mildew genome shows the unique evolution of an obligate biotroph[J].Nat Genet,2013,45:1092-1096.
[13] Hacquard S,Kracher B,Maekawa T,et al.Mosaic genome structure of the barley powdery mildew pathogen and conservation of transcriptional programs in divergent hosts[J].Proc Natl Acad Sci USA,2013,110(24):E2219-E2228.
[14] Godfrey D,Bohlenius H,Pedersen C,et al.Powdery mildew fungal effector candidates share N-terminal Y/F/WxC-motif[J].BMC Genomics,2010,11:317.
[15] Godfrey D,Zhang Ziguo,Saalbach G,et al.A proteomics study of barley powdery mildew haustoria[J].Proteomics,2009,9:3222-3232.
[16] Bindschedler L V,Burgis T A,Mills D J S,et al.In planta proteomics and proteogenomics of the biotrophic barley fungal pathogen Blumeria graminis f. sp. hordei[J].Mol Cell Proteomics,2009,8:2368-2381.
[17] Bindschedler L V,McGuffifin L J,Burgis T A,et al.Proteogenomics and in silico structural and functional annotation of the barley powdery mildew Blumeria graminis f. sp. hordei[J].Methods,2011,54:432-441.
[18] Pedersen C,van Themaat E V L,McGuffifin L J,et al.Structure and evolution of barley powdery mildew effector candidates[J].BMC Genomics,2012,13:694.
[19] Bindschedler L V,Panstruga R,Spanu P D.Mildew-omics:how global analyses aid the understanding of life and evolution of powdery mildews[EB/OL].[2016-02-15].[2017-11-18].https:∥www.frontiersin.org/article/10.3389/fpls.2016.00123/full.
[20] Menardo F,Praz C R,Wicker T,et al.Rapid turnover of effectors in grass powdery mildew(Blumeria graminis)[J].BMC Evolutionary Biology,2017,17(1):223.
[21] Muller M C,Praz C R,Sotiropoulos A G,et al.A chromosome-scale genome assembly reveals a highly dynamic effector repertoire of wheat powdery mildew[J].New Phytol,2018,221:2176-2189.
[22] De Jonge R,Bolton M D,Thomma B P.How fifilamentous pathogens co-opt plants:the ins and outs of fungal effectors[J].Curr Opin Plant Biol,2011,14:400-406.
[23] Dodds P N,Rathjen J P.Plant immunity:towards an integrated view of plant-pathogen interactions[J].Nat Rev Genet,2010,11:539-548.
[24] Hogenhout S A,van der Hoorn R A,Terauchi R,et al.Emerging concepts in effector biology of plant-associated organisms[J].Mol Plant-Microbe Interact,2009,22:115-122.
[25] Panstruga R,Dodds P N.Terrifific protein traffific:the mystery of effector protein delivery by fifilamentous plant pathogens[J].Science,2009,324:748-750.
[26] Pliego C,Nowara D,Bonciani G,et al.Hostinduced gene silencing in barley powdery mildew reveals a class of ribonuclease-like effectors[J].Mol Plant-Microbe Interact,2013,26:633-642.
[27] Zhang Wenjing,Pedersen C,Kwaaitaal M,et al.Interaction of barley powdery mildew effector candidate CSEP0055 with the defence protein PR17c[J].Mol Plant Path,2012,13:1110-1119.
[28] Schmidt S M,Kuhn H,Micali C,et al.Interaction of a Blumeria graminis f.sp. hordei effector candidate with a barley ARF-GAP suggests that host vesicle trafficking is a fungal pathogenicity target[J].Mol Plant Path,2014,15:535-549.
[29] Ahmed A A,Pedersen C,Schultz-Larsen T,et al.The barley powdery mildew candidate secreted effector protein CSEP0105 inhibits the chaperone activity of a small heat shock protein[J].Plant Physiol,2015,168:321-333.
[30] Abdurehim A A,Pedersen C,Thordal-Christensen H.The barley powdery mildew effector candidates CSEP0081 and CSEP0254 promote fungal infection success[J].PLoS One,2016,11(6):e0157586.
[31] Aguilar G B,Pedersen C,Thordal-Christensen H.Identification of eight effector candidate genes involved in early aggressiveness of the barley powdery mildew fungus[J].Plant Path,2015; doi:10.1111/ppa.12476.
[32] Pennington H G,Gheorghe D M,Damerum A,et al.Interactions between the powdery mildew effector BEC1054 and barley proteins identify candidate host targets[J].Journal of Proteome Research,2016,15(3):826-839.
[33] Sharma S,Sharma V K.Modeling studies and interaction of pathogenesis related protein(PR5)of Hordeum vulgare and candidates for secreted effector proteins(CSEP0064)of Blumeria graminis[J].Indian Journal of Bioinformatics and Biotechnology,2016,4(3):2319-6599.
[34] Pennington H G,Jones R,Kwon S,et al.The fungal ribonuclease-like effector protein CSEP0064/BEC1054 represses plant immunity and interferes with degradation of host ribosomal RNA[J].PLoS Pathog,2019,15(3):e1007620.
[35] Hein I,Gilroy E M,Armstrong M R,et al.The zig-zag-zig in oomycete-plant interactions[J].Mol Plant Path,2009,10:547-562.
[36] Bourras S,Praz C R,Spanu P D,et al.Cereal powdery mildew effectors:a complex toolbox for an obligate pathogen[J].Current Opinion in Microbiology,2018,46:26-33.
[37] Parlange F,Rofflfler S,Menardo F,et al.Genetic and molecular characterization of a locus involved in avirulence of Blumeria graminis f. sp.triticion wheat Pm3 resistance alleles[J].Fungal Genet Biol,2015,82:181-192.
[38] Takagi H,Abe A,Yoshida K,et al.QTL-seq:rapid mapping of quantitative trait loci in rice by whole genome resequencing of DNA from two bulked populations[J].Plant J,2013,74:174-183.
[39] McNally K E,Menardo F,Luthi L,et al.Distinct domains of the AVRPM3A2/F2 avirulence protein from wheat powdery mildew are involved in immune receptor recognition and putative effector function[J].New Phytol,2018,218(2):681-695.

备注/Memo

备注/Memo:
收稿日期:2019-08-01
基金项目:国家自然科学基金(31960085)和江西省研究生创新基金(YJS2017058)资助项目.
通信作者:谢建坤(1965-),男,江西南昌人,教授,博士,主要从事植物生物技术与遗传改良研究.E-mail:xiejiankun@jxnu.edu.cn
更新日期/Last Update: 2020-10-20