[1]李艺培,刘莫愁,何莉玲,等.非气态原料制备垂直石墨烯[J].江西师范大学学报(自然科学版),2020,(06):551-560.[doi:10.16357/j.cnki.issn1000-5862.2020.06.01]
 LI Yipei,LIU Mochou,HE Liling,et al.The Preparation of Vertical Graphene from Non-Gaseous Materials[J].Journal of Jiangxi Normal University:Natural Science Edition,2020,(06):551-560.[doi:10.16357/j.cnki.issn1000-5862.2020.06.01]
点击复制

非气态原料制备垂直石墨烯()
分享到:

《江西师范大学学报》(自然科学版)[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2020年06期
页码:
551-560
栏目:
化学与环境科学
出版日期:
2020-12-20

文章信息/Info

Title:
The Preparation of Vertical Graphene from Non-Gaseous Materials
文章编号:
1000-5862(2020)06-0551-10
作者:
李艺培刘莫愁何莉玲刘 健刘盛旺王志朋*
江西师范大学先进材料研究院,江西 南昌 330022
Author(s):
LI YipeiLIU MochouHE LilingLIU JianLIU ShengwangWANG Zhipeng*
Institute of Advanced Materials,Jiangxi Normal University,Nanchang Jiangxi 330022,China
关键词:
垂直石墨烯 化学气相沉积 等离子体 非气态碳源
Keywords:
vertical graphene chemical vapor deposition plasma non-gaseous materials
分类号:
O 611.4
DOI:
10.16357/j.cnki.issn1000-5862.2020.06.01
文献标志码:
A
摘要:
垂直石墨烯是由石墨烯片垂直于基底生长而形成的一种新型3维碳材料结构,由于其独特的生长取向,可以有效减轻石墨烯层与层之间的堆叠,使石墨烯充分发挥其优异的特性.等离子体增强化学气相沉积技术作为合成垂直石墨烯的主要手段常需引入化工合成气为碳源,原料灵活性低.该文综述了非气态碳源用于垂直石墨烯的制备,介绍了所合成的垂直石墨烯在多种领域中的应用,并讨论了其生长机理.
Abstract:
Vertical graphene is a novel three-dimensional carbon material structure formed by the growth of graphene sheets perpendicular to the substrates.Due to its unique growth orientation,it can effectively reduce the stacking of graphene layers and exert the excellent characteristics of graphene.Plasma-enhanced chemical vapor deposition technology as the main method for the synthesis of vertical graphene often requires the introduction of chemical synthesis gas as carbon sources which are subject to the low flexibility of the raw materials.The use of non-gaseous carbon sources for vertical graphene preparation and their application are reviewed in this paper.Finally,the growth mechanism is discussed.

参考文献/References:

[1] Geim A K,Novoselov K S.The rise of graphene[J].Nat Mater,2007,6:183-191.
[2] Novoselov K S,Geim A K,Morozov S V,et al.Electric field effect in atomically thin carbon films[J].Science,2004,306(5696):666-669.
[3] Simon P,Gogotsi Y.Capacitive energy storage in nanostructured carbon electrolyte systems[J].Acc Chem Res,2013,46(5):1094-1103.
[4] Zhu Yanwu,Murali S,Stoller M D,et al.Carbon-based supercapacitors produced by activation of graphene[J].Science,2011,332(6037):1537-1541.
[5] Palermo V,Kinloch I A,Ligi S,et al.Nanoscale mechanics of graphene and graphene oxide in composites:a scientific and technological perspective[J].Adv Mater,2016,28(29):6232-6238.
[6] Lahiri J,Lin You,Bozkurt P,et al.An extended defect in graphene as a metallic wire[J].Nat Nanotechnol,2010,5(5):326-329.
[7] Zhang Long,Zhang Fan,Yang Xi,et al.Porous 3D graphene-based bulk materials with exceptional high surface area and excellent conductivity for supercapacitors[J].Sci Rep,2013,3:1408.
[8] Li Shuwen,Yu Zhounan,Yang Yuanyuan,et al.Nitrogen-doped truncated carbon nanotubes inserted into nitrogen-doped graphene nanosheets with a sandwich structure:a highly efficient metal-free catalyst for the HER[J].J Mater Chem A,2017,5(14):6405-6410.
[9] Yavari F,Chen Zongping,Thomas A V,et al.High sensitivity gas detection using a macroscopic three-dimensional graphene foam network[J].Sci Rep,2011,23:1-5.
[10] Wu Yihong,Qiao Peiwen,Chong Towchong,et al.Carbon nanowalls grown by microwave plasma enhanced chemical vapor deposition[J].Adv Mater,2002,14(1):64-67.
[11] Takeuchi W,Ura M,Hiramatsu M,et al.Electrical conduction control of carbon nanowalls[J].Appl Phys Lett,2008,92(21):213103.
[12] Wang Zhipeng,Shoji M,Ogata H.Growth and electrochemical properties of carbon nanosheets via microwave plasma enhanced chemical vapor deposition[J].Fuller Nanotub Car N,2012,20(4/5/6/7):473-481.
[13] Yu Kehan,Bo Zheng,Lu Ganhua,et al.Growth of carbon nanowalls at atmospheric pressure for one-step gas sensor fabrication[J].Nanoscale Res Lett,2011,6(1):202.
[14] Zhang Lixia,Sun Zhanhong,Qi Junlei,et al.Understanding the growth mechanism of vertically aligned graphene and control of its wettability[J].Carbon,2016,103:339-345.
[15] Wang Zhipeng,Shoji M,Baba K,et al.Microwave plasma-assisted regeneration of carbon nanosheets with bi- and trilayer of graphene and their application to photovoltaic cells[J].Carbon,2014,67:326-335.
[16] Zhu Mingyao,Wang Jianjun,Holloway B C,et al.A mechanism for carbon nanosheet formation[J].Carbon,2007,45(11):2229-2234.
[17] Miller J R,Outlaw R A,Holloway B C.Graphene double-layer capacitor with ac line-filtering performance[J].Science,2010,329(5999):1637-1639.
[18] Wang Huaping,Gao Enlai,Liu Peng,et al.Facile growth of vertically-aligned graphene nanosheets via thermal CVD:the experimental and theoretical investigations[J].Carbon,2017,121:1-9.
[19] Haskins J,Kinaci A,Sevik C,et al.Control of thermal and electronic transport in defect-engineered graphene nanoribbons[J].Acs Nano,2011,5(5):3779-3787.
[20] Lehmann K,Yurchenko O,Melke J,et al.High electrocatalytic activity of metal-free and non-doped hierarchical carbon nanowalls towards oxygen reduction reaction[J].Electrochim Acta,2018,269:657-667.
[21] Wang Zhipeng,Shoji M,Ogata H.Electrochemical determination of NADH based on MPECVD carbon nanosheets[J].Talanta,2012,99:487-491.
[22] Mao Shun,Yu Kehan,Chang Jingbo,et al.Direct growth of vertically-oriented graphene for field-effect transistor biosensor[J].Sci Rep,2013,3:1696.
[23] Li Jinhua,Zhu Minjie,An Zhonglie,et al.Constructing in-chip micro-supercapacitors of 3D graphene nanowall/ruthenium oxides electrode through silicon-based microfabrication technique[J].J Power Sources,2018,401:204-212.
[24] Li Wenyue,Zhang Zhenyu,Tang Yongbing,et al.Graphene-nanowall-decorated carbon felt with excellent electrochemical activity toward VO+2/VO2+ couple for all vanadium redox flow battery[J].Adv Sci,2016,3(4):1500276.
[25] Sahoo G,Ghosh S,Polaki S R,et al.Scalable transfer of vertical graphene nanosheets for flexible supercapacitor applications[J].Nanotechnology,2017,28(41):415702.
[26] Lisi N,Giorgi R,Re M,et al.Carbon nanowall growth on carbon paper by hot filament chemical vapour deposition and its microstructure[J].Carbon,2011,49(6):2134-2140.
[27] Shih W C,Jeng J M,Huang C T,et al.Fabrication of carbon nanoflakes by RF sputtering for field emission applications[J].Vacuum,2010,84(12):1452-1456.
[28] Zhang Jinahui,Khatri I,Kishi N,et al.Low substrate temperature synthesis of carbon nanowalls by ultrasonic spray pyrolysis[J].Thin Solid Films,2011,519(13):4162-4165.
[29] Zhu Mingyao,Outlaw R A,Bagge-Hansen M,et al.Enhanced field emission of vertically oriented carbon nanosheets synthesized by C2H2/H2 plasma enhanced CVD[J].Carbon,2011,49(7):2526-2531.
[30] Ando Y,Zhao Xinluo,Ohkohchi M.Production of petal-like graphite sheets by hydrogen arc discharge[J].Carbon,1997,35(1):153-158.
[31] Guo Xin,Qin Shengchun,Bai Shuai,et al.Vertical graphene nanosheets synthesized by thermal chemical vapor deposition and the field emission properties[J].J Phys D:Appl Phys,2016,49(38):1-6.
[32] Sun Zhongxin,Zheng Mingtao,Hu Hang,et al.From biomass wastes to vertically aligned graphene nanosheet arrays:a catalyst-free synthetic strategy towards high-quality graphene for electrochemical energy storage[J].Chem Eng Journal,2018,336:550-561.
[33] Zhao Jiong,Shaygan M,Eckert J,et al.A growth mechanism for free-standing vertical graphene[J].Nano Lett,2014,14(6):3064-3071.
[34] Giese A,Schipporeit S,Buck V,et al.Synthesis of carbon nanowalls from a single-source metal-organic precursor[J].Beilstein J Nanotechnol,2018,9:1895-1905.
[35] Jain H G,Karacuban H,Krix D,et al.Carbon nanowalls deposited by inductively coupled plasma enhanced chemical vapor deposition using aluminum acetylacetonate as precursor[J].Carbon,2011,49(15):4987-4995.
[36] Wang Zhipeng,Ogata H,Morimoto S,et al.Synthesis of carbon nanosheets from Kapton polyimide by microwave plasma treatment[J].Carbon,2014,72:421-424.
[37] Seo D H,Rider A E,Han Z J,et al.Plasma break-down and re-build:same functional vertical graphenes from diverse natural precursors[J].Adv Mater,2013,25(39):5638-5642.
[38] Seo D H,Rider A E,Kumar S,et al.Vertical graphene gas- and bio-sensors via catalyst-free,reactive plasma reforming of natural honey[J].Carbon,2013,60:221-228.
[39] Seo D H,Han Z J,Kumar S,et al.Structure controlled vertical graphene-based,binder-free electrodes from plasma-reformed butter enhance supercapacitor performance[J].Adv Energy Mater,2013,3(10):1316-1323.
[40] Jacob M V,Rawat R S,Ouyang B,et al.Catalyst-free plasma enhanced growth of graphene from sustainable sources[J].Nano Lett,2015,15(9):5702-5708.
[41] Alancherry S,Jacob M V,Prasad K,et al.Tuning and fine morphology control of natural resource-derived vertical graphene[J].Carbon,2020,159:668-685.
[42] Cheng C Y,Teii K.Control of the growth regimes of nanodiamond and nanographite in microwave plasmas[J].Ieee T Plasma Sci,2012,40(7):1783-1788.
[43] Deng Jianhua,Zheng Ruiting,Zhao Yong,et al.Vapor solid growth of few-layer graphene using radio frequency sputtering deposition and its application on field emission[J].ACS Nano,2012,6(5):3727-3733.

备注/Memo

备注/Memo:
收稿日期:2020-07-10
基金项目:国家自然科学基金(51872130)资助项目.
通信作者:王志朋(1981-),男,江西南昌人,研究员,博士,主要从事纳米碳材料研究.E-mail:wangzhipeng@jxnu.edu.cn
更新日期/Last Update: 2020-12-20