[1]李银银,李田莉,代 芳,等.2维层状Ti2CTx电极材料的制备和电化学性能研究[J].江西师范大学学报(自然科学版),2020,(06):573-579.[doi:10.16357/j.cnki.issn1000-5862.2020.06.04]
 LI Yinyin,LI Tianli,DAI Fang,et al.The Preparation and Electrochemical Performance of Two-Dimensional Ti2CTx Materials[J].Journal of Jiangxi Normal University:Natural Science Edition,2020,(06):573-579.[doi:10.16357/j.cnki.issn1000-5862.2020.06.04]
点击复制

2维层状Ti2CTx电极材料的制备和电化学性能研究()
分享到:

《江西师范大学学报》(自然科学版)[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2020年06期
页码:
573-579
栏目:
化学与环境科学
出版日期:
2020-12-20

文章信息/Info

Title:
The Preparation and Electrochemical Performance of Two-Dimensional Ti2CTx Materials
文章编号:
1000-5862(2020)06-0573-07
作者:
李银银1李田莉1代 芳2丁立稳1章 磊1温祖标1*
1.江西师范大学化学化工学院,江西 南昌 330022; 2.南昌工程学院江西省精密驱动与控制重点实验室,江西 南昌 330099
Author(s):
LI Yinyin1LI Tianli1DAI Fang2DING Liwen1ZHANG Lei1WEN Zubiao1*
1.College of Chemistry and Chemical Engineering,Jiangxi Normal University,Nanchang Jiangxi 330022,China; 2.Jiangxi Province Key Laboratory of Precision Drive and Control,Nanchang Institute of Technology,Nanchang Jiangxi 330099,China
关键词:
2维材料 Ti2CTx 电化学性能
Keywords:
two-dimensional material Ti2CTx electrochemical performance
分类号:
TQ 174
DOI:
10.16357/j.cnki.issn1000-5862.2020.06.04
文献标志码:
A
摘要:
以Ti2AlC为前驱体,以盐酸与氟化锂的溶液为刻蚀剂,在40 ℃磁力搅拌条件下,刻蚀48 h制得Ti2CTx材料.分别采用N2吸附/脱附、X-射线衍射、拉曼光谱、扫描电子显微镜、能量色散X-射线光谱仪和透射电镜等方法对试样的比表面积、孔分布、晶相结构、形貌特征等物理性质进行了表征; 用循环伏安、恒流充放电和交流阻抗等电化学方法研究了Ti2CTx材料在2 mol·L-1 KOH溶液中的电化学特性.实验结果表明:Ti2CTx是2维层状材料,在电流密度为1 A·g-1时,该材料的比容量为119 F·g-1,经10 000次充放电循环后,比容量保留率为98%,且保持较高的库伦效率.
Abstract:
Ti2AlC is used as raw material,hydrochloric acid and lithium fluoride is used as an etching agent,magnetic stirring at 40 ℃,etching 48 h to obtain Ti2CTx two-dimensional material.The physical properties are characterized by XRD、TEM、BET、Raman、SEM、EDX and TEM,respectively.And their electrochemical performance in 2 mol·L-1 KOH electrolyte is studied.The experimental results show that the specific capacity of Ti2CTx at 1 A·g-1 is as high as 119 F·g-1 after 10 000 charge-discharge cycles.Besides,the specific capacity retention rate is 98% and the coulomb efficiency remains high.

参考文献/References:

[1] Dunn B,Kamath H,Tarascon J M.Electrical energy storage for the grid:a battery of choices[J].Science,2011,334(6058):928-935.
[2] Huang Xuejie,Meng Qingbo,Chen Hong,et al.Renewable energy conversion,storage,and efficient utilization[J].Science,2018,360(6389):47-51.
[3] Choi M,Shrestha M M,Lee J,et al.Development of a laser-powered wireless ultrasonic device for aircraft structural health monitoring[J].Struct Health Monit,2017,17(2):145-155.
[4] Kang S H,Kim I G,Kim B,et al.Facile fabrication of flexible in-plane graphene micro-supercapacitor via flash reduction[J].Etri J,2018,40(2):275-282.
[5] Mishra D,De S.Effects of practical rechargeability constraints on perpetual RF harvesting sensor network operation[J].Ieee Access,2016,4:750-765.
[6] Zuo Wenhua,Li Ruizhi,Zhou Ceng,et al.Battery-supercapacitor hybrid devices:recent progress and future prospects[J].Adv Sci,2017,4(7):1-21.
[7] Lee J M,Briggs M E,Hu Chichang,et al.Controlling electric double-layer capacitance and pseudocapacitance in heteroatom-doped carbons derived from hypercrosslinked microporous polymers[J].Nano Energy,2018,46:277-289.
[8] Wang Yonggang,Song Yanfang,Xia Yongyao.Electrochemical capacitors:mechanism,materials,systems,characterization and applications[J].Chem Soc Rev,2016,45(21):5925-5950.
[9] Forse A C,Merlet C,Griffin J M,et al.New perspectives on the charging mechanisms of supercapacitors[J].J Am Chem Soc,2016,138(18):5731-5744.
[10] Hao Long,Li Xianglong,Zhi Linjie.Carbonaceous electrode materials for supercapacitors[J].Adv Mater,2013,25(28):3899-3904.
[11] Ma Yong,Hou Chunping,Zhang Hepeng,et al.Three-dimensional core-shell Fe3O4/Polyaniline coaxial heterogeneous nanonets:preparation and high performance supercapacitor electrodes[J].Electrochimica Acta,2019,315:114-123.
[12] Huang Yan,Zhong Ming,Huang Yang,et al.A self-healable and highly stretchable supercapacitor based on a dual crosslinked polyelectrolyte[J].Nat Commun,2015,6:10310.
[13] Liu Yu,Zhang Baihe,Wang Faxing,et al.Nanostructured intercalation compounds as cathode materials for supercapcitors[J].Pure Appl Chem,2014,86(5):593-609.
[14] Li Tianli,Liu Zaichun,Zhu Li,et al.Cr2O3 nanoparticles:a fascinating electrode material combining both surface-controlled and diffusion-limited redox reactions for aqueous supercapacitors[J].J Mater Sci,2018,53(24):16458-16465.
[15] 朱莉,于峰,游婷,等.制备3D-MnO2/Ni复合材料并运用于高性能超级电容器[J].江西师范大学学报:自然科学版,2017,41(1):85-88.
[16] Wang Tian,Dong Fan,Zhang Yuxin.Diverse birnessite MnO2 nanosheets-based nanocomposites for supercapacitors[J].Mater Lett,2016,171:319-322.
[17] Wen Zubiao,Yu Fang,You Ting,et al.A core-shell structured nanocomposite of NiO with carbon nanotubes as positive electrode material of high capacitance for supercapacitors[J].Mater Res Bull,2016,74:241-247.
[18] Shiri H M,Aghazadeh M.Synthesis,Characterization and electrochemical properties of capsule-like NiO nanoparticles[J].J Electrochem Soc,2012,159(6):E132-E138.
[19] Wang Yonggang,Hong Zhensheng,Wei Mingdeng,et al.Layered H2Ti6O13-nanowires:a new promising pseudocapacitive material in non-aqueous electrolyte[J].Adv Funct Mater,2012,22(24):5185-5193.
[20] Liu Yu,Zhang Baihe,Yang Yaqiong,et al.Polypyrrole-coated α-MoO3 nanobelts with good electrochemical performance as anode materials for aqueous supercapacitors[J].J Mater Chem A,2013,1(43):13582-13587.
[21] Zhang Genqiang,Lou Xiong,Wen David.General solution growth of mesoporous NiCo2O4 nanosheets on various conductive substrates as high-performance electrodes for supercapacitors[J].Adv Mater,2013,25(7):976-979.
[22] Pang Jinbo,Mendes R G,Bachmatiuk A,et al.Applications of 2D MXenes in energy conversion and storage systems[J].Chem Soc Rev,2019,48(1):72-133.
[23] Naguib M,Kurtoglu M,Presser V,et al.Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2[J].Adv Mater,2011,23(37):4248-4253.
[24] Ghidiu M,Lukatskaya M R,Zhao Mengqiang,et al.Conductive two-dimensional titanium carbide'clay with high volumetric capacitance[J].Nature,2014,7529(516):78-81.
[25] Ye Genlan,Wen Zubiao,Wen Feng,et al.Mussel-inspired conductive Ti2C-cryogel promotes functional maturation of cardiomyocytes and enhances repair of myocardial infarction[J].Theranostics,2020,10(5):2047-2066.
[26] Naguib M,Mochalin V N,Barsoum M W,et al.MXenes:a new family of two-dimensional materials[J].Adv Mater,2014,26(7):992-1005.
[27] Yang Jian,Naguib M,Ghidiu M,et al.Two-dimensional Nb-based M4C3 solid solutions(MXenes)[J].J Am Ceram Soc,2016,99(2):660-666.
[28] Zhou Jie,Zha Xianhu,Chen Fan,et al.A two-dimensional zirconium carbide by selective etching of Al3C3 from nanolaminated Zr3Al3C5[J].Angew Chem Int Edit,2016,55(16):5008-5013.
[29] Urbankowski P,Anasori B,Makaryan T,et al.Synthesis of two-dimensional titanium nitride Ti4N3(MXene)[J].Nanoscale,2016,8(22):11385-11391.
[30] Anasori B,Xie Yu,Beidaghi M,et al.Two-dimensional,ordered,double transition metals carbides(MXenes)[J].ACS Nano,2015,9(10):9507-9516.
[31] Lin Shuangyan,Zhang Xitian.Two-dimensional titanium carbide electrode with large mass loading for supercapacitor[J].Journal of Power Sources,2015,294:354-359.
[32] Perera S D,Liyanage A D,Nijem N,et al.Vanadium oxide nanowire-Graphene binder free nanocomposite paper electrodes for supercapacitors:a facile green approach[J].Journal of Power Sources,2013,230:130-137.
[33] Mashtalir O,Naguib M,Dyatkin B,et al.Kinetics of aluminum extraction from Ti3AlC2 in hydrofluoric acid[J].Mater Chem Phys,2013,139(1):147-152.
[34] Jankovsky' O,Sedmidubsky' D,Lojka M,et al.Thermal properties of graphite oxide,thermally reduced graphene and chemically reduced graphene[J].AIP Conf Proc,2017,1866(1):1378-1383.
[35] Liu Fanfan,Zhou Aiguo,Chen Jinfeng,et al.Preparation and methane adsorption of two-dimensional carbide Ti2C[J].Adsorption,2016,22(7):915-922.
[36] Singh C,Mishra A K,Paul A.Highly conducting reduced graphene synthesis via low temperature chemically assisted exfoliation and energy storage application[J].J Mater Chem A,2015,3(36):18557-18563.
[37] Wang Ya,Dou Hui,Wang Jie,et al.Three-dimensional porous MXene/layered double hydroxide composite for high performance supercapacitors[J].J Power Sources,2016,327:221-228.
[38] Lin Shuangyan,Zhang Xitian.Two-dimensional titanium carbide electrode with large mass loading for supercapacitor[J].J Power Sources,2015,294:354-359.
[39] Wang Dawei,Li Feng,Liu Min,et al.3D aperiodic hierarchical porous graphitic carbon material for high-rate electrochemcial capacitive energy storage[J].Angew Chem Int Edit,2008,47:373-376.
[40] Wang Tao,Song Dengfei,Zhao Hao,et al.Facilitated transport channels in carbon nanotube/carbon nanofiber hierarchical composites decorated with manganese dioxide for flexible supercapacitors[J].J Power Sources,2015,274:709-717.
[41] Hassan S,Suzuki M,Mori S,et al.MnO2/carbon nanowall electrode for future energy storage application:effect of carbon nanowall growth period and MnO2 mass loading[J].RSC Adv,2014,4(39):20479-20488.

备注/Memo

备注/Memo:
收稿日期:2019-06-05
基金项目:国家自然科学基金(21463013),江西省自然科学基金(20171BAB203013)和江西省教育厅科技课题(GJJ190952)资助项目.
通信作者:温祖标(1976-),男,江西石城人,副教授,博士,主要从事纳米材料电化学研究.E-mail:zbwen@jxnu.edu.cn
更新日期/Last Update: 2020-12-20