[1]张 曦,李 璠,付雪峰,等.随机学习萤火虫算法优化的模糊软子空间聚类算法[J].江西师范大学学报(自然科学版),2021,(02):137-144.[doi:10.16357/j.cnki.issn1000-5862.2021.02.05]
 ZHANG Xi,LI Fan,FU Xuefeng,et al.The Fuzzy Soft Subspace Clustering Algorithm Optimized by Random Learning Firefly Algorithm[J].Journal of Jiangxi Normal University:Natural Science Edition,2021,(02):137-144.[doi:10.16357/j.cnki.issn1000-5862.2021.02.05]
点击复制

随机学习萤火虫算法优化的模糊软子空间聚类算法()
分享到:

《江西师范大学学报》(自然科学版)[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2021年02期
页码:
137-144
栏目:
信息科学与技术
出版日期:
2021-04-10

文章信息/Info

Title:
The Fuzzy Soft Subspace Clustering Algorithm Optimized by Random Learning Firefly Algorithm
文章编号:
1000-5862(2021)02-0137-08
作者:
张 曦1李 璠12付雪峰12谭德坤12赵 嘉123*
1.南昌工程学院信息工程学院,江西 南昌 330099; 2.江西省水信息协同感知与智能处理重点实验室,江西 南昌 330099; 3.鄱阳湖流域水工程安全与资源高效利用国家地方联合工程实验室,江西 南昌 330099
Author(s):
ZHANG Xi1LI Fan12FU Xuefeng12TAN Dekun12ZHAO Jia123*
1.School of Information Engineering,Nanchang Institute of Technology,Nanchang Jiangxi 330099,China; 2.Jiangxi Province Key Laboratory of Water Information Cooperative Sensing and Intelligent Processing,Nanchang Jiangxi 330099,China; 3.National-Local Engineering Laboratory of Water Engineering Safety and Effective Utilization of Resources in Poyang Lake Area,Nanchang Jiangxi 330099,China
关键词:
软子空间聚类 变量加权 萤火虫算法
Keywords:
soft subspace clustering variable weighting firefly algorithm
分类号:
TP 301.6
DOI:
10.16357/j.cnki.issn1000-5862.2021.02.05
文献标志码:
A
摘要:
传统软子空间聚类算法在利用局部搜索策略解决等式约束的连续非线性的变量加权问题时,易陷入局部最优导致聚类效果不佳.针对该问题,该文提出了一种随机学习萤火虫算法优化的模糊软子空间聚类算法.该算法利用具有全局搜索能力的萤火虫算法对新算法的目标函数进行优化,同时,为弥补萤火虫算法易提前收敛和寻优精度较低的缺陷,对萤火虫种群进化方式和全局最优粒子的学习方式进行了改进.新算法将权值矩阵拟化成萤火虫种群,使变量加权的等式约束变为界约束,通过萤火虫位置的更新搜索最优权重并发掘子空间中隐藏的簇类.在人工数据集、UCI标准数据集和癌症基因表达数据集上的实验结果表明:该算法具有较好的聚类效果.
Abstract:
The traditional soft subspace clustering algorithm uses local search strategy to solve the continuous nonlinear variable weighting problem with equality constraints,and is easy to fall into local optimum,resulting in poor clustering result.To solve this problem,a fuzzy soft subspace clustering algorithm optimized by random learning firefly algorithm is proposed.The firefly algorithm with global search ability is used to optimize the objective function of the new algorithm.At the same time,in order to make up for premature convergence and low precision of firefly algorithm,the evolution pattern of firefly population and the learning method of global optimal particle are improved.The new algorithm formulates the weight matrix into firefly population,and transforms equality constraints of variable weighting problem into bound constraints,updating the firefly position to search for optimal weight and to explore the hidden clusters in the subspace.The experimental results on artificial dataset,UCI standard dataset and cancer gene expression dataset show that the new algorithm has better clustering effect.

参考文献/References:

[1] 潘敏,王明文,王晓庆,等.基于簇特征的文本增量聚类研究[J].江西师范大学学报:自然科学版,2014,38(1):95-101.
[2] 张巍,王洋,刘东宁,等.基于随机聚类方法建模的序列分析[J].江西师范大学学报:自然科学版,2017,41(5):470-475.
[3] 程艳,解建华,谭平飞,等.面向虚拟学习社区的学习行为特征挖掘与分组方法的研究[J].江西师范大学学报:自然科学版,2016,40(6):640-643.
[4] Tsoucas D,Yuan G C.GiniClust2:a cluster-aware,weighted ensemble clustering method for cell-type detection[J].Genome Biology,2018,19(1):58.
[5] 张曦,赵嘉,李沛武,等.改进萤火虫优化的软子空间聚类算法[J].南昌工程学院学报,2018,37(4):61-67.
[6] Agrawal R,Gehrke J,Gunopulos D,et al.Automatic subspace clustering of high dimensional data for data mining applications[J].Special Interest Group on Management of Data of the Association for Computing Machinery,1998,27(2):94-105.
[7] Jing L,Ng M K,Huang J Z.An entropy weighting k-means algorithm for subspace clustering of high-dimensional sparse data[J].IEEE Transactions on Knowledge and Data Engineering,2007,19(8):1026-1041.
[8] 张恒巍,何嘉婧,韩继红,等.基于智能优化算法的模糊软子空间聚类方法[J].计算机科学,2016,43(3):256-261.
[9] 程铃钫,杨天鹏,陈黎飞.不平衡数据的软子空间聚类算法[J].计算机应用,2017,37(10):2952-2957.
[10] 范虹,侯存存,朱艳春,等.烟花算法优化的软子空间MR图像聚类算法[J].软件学报,2017,28(11):3080-3093.
[11] 范虹,史肖敏,姚若侠.头脑风暴算法优化的乳腺MR图像软子空间聚类算法[J].计算机科学与探索,2020,14(8):1348-1357.
[12] Lu Yanping,Wang Shengrui,Li Shaozi,et al.Particle swarm optimizer for variable weighting in clustering high-dimensional data[J].Machine learning,2011,82(1):43-70.
[13] Yang Xinshe.Nature-inspired metaheuristic algorithms[M].London:Luniver Press,2008.
[14] Chitsaz E,Jahromi M Z.A novel soft subspace clustering algorithm with noise detection for high dimensional datasets[J].Soft Computing,2016,20(11):4463-4472.
[15] 赵嘉,谢智峰,吕莉,等.深度学习萤火虫算法[J].电子学报,2018,46(11):2633-2641.
[16] Domeniconi C,Gunopulos D,Ma S,et al.Locally adaptive metrics for clustering high dimensional data[J].Data Mining and Know-Ledge Discovery,2007,14(1):63-97.
[17] Gan Gao,Wu Jin.A convergence theorem for the fuzzy subspace clustering algorithm[J].Pattern Recognition,2008,41(6):1939-1947.
[18] Tao Lei,Jia Xiaohong,Zhang Yanning,et al.Significantly fast and robust fuzzy c-means clustering algorithm based on morphological reconstruction and membership filtering[J].IEEE Transactions on Fuzzy Systems,2018,26(5):3027-3041.
[19] Dave R N.Characterization and detection of noise in clustering[J].Pattern Recognition Letters,1991,12(11):657-664.
[20] Li Yangyang,Liang Xiaoxu,Lu Yujing,et al.Soft subspace clustering using QPSOSC algorithm[EB/OL].[2019-11-17].https://ieeexplore.ieee.org/document/8285264.
[21] Deng Zhaohong,Choi K S,Chung F L,et al.Enhanced soft subspace clustering integrating within-cluster and between-cluster information[J].Pattern Recognition,2010,43(3):767-781.
[22] Jing Liping,Ng M K,Xu Jun,et al.Subspace clustering of text documents with feature weighting k-means algorithm[EB/OL].[2019-11-17].https://link.springer.com/chapter/10.1007/11430919_94.
[23] 谢智峰,吴润秀,吕莉.多策略融合萤火虫算法在年径流预测中的应用[J].南昌工程学院学报,2020,40(1):20-27.

备注/Memo

备注/Memo:
收稿日期:2020-01-18
基金项目:国家自然科学基金(52069014,61762063,51669014),江西省自然科学基金(2018ACB21029)和江西省教育厅科学技术研究(GJJ190956)资助项目.
通信作者:赵 嘉(1981—),男,安徽桐城人,教授,博士,主要从事智能计算与计算智能、数据挖掘与机器学习等研究.E-mail:zhaojia925@163.com
更新日期/Last Update: 2021-04-10