[1]郑新喜,方志刚*,侯欠欠,等.团簇Fe3Ni3的极化率与催化性质[J].江西师范大学学报(自然科学版),2021,(05):473-479.[doi:10.16357/j.cnki.issn1000-5862.2021.05.05]
 ZHENG Xinxi,FANG Zhigang*,HOU Qianqian,et al.The Polarizability and Catalytic Properties of Cluster Fe3Ni3[J].Journal of Jiangxi Normal University:Natural Science Edition,2021,(05):473-479.[doi:10.16357/j.cnki.issn1000-5862.2021.05.05]
点击复制

团簇Fe3Ni3的极化率与催化性质()
分享到:

《江西师范大学学报》(自然科学版)[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2021年05期
页码:
473-479
栏目:
出版日期:
2021-10-10

文章信息/Info

Title:
The Polarizability and Catalytic Properties of Cluster Fe3Ni3
文章编号:
1000-5862(2021)05-0473-07
作者:
郑新喜方志刚*侯欠欠吕孟娜井润田
辽宁科技大学化学工程学院,辽宁 鞍山 114051
Author(s):
ZHENG XinxiFANG Zhigang*HOU QianqianLYU MengnaJING Runtian
School of Chemical Engineering,University of Science and Technology Liaoning,Anshan Liaoning 114051,China
关键词:
密度泛函理论 极化率 前线轨道理论 催化性质 费米能级
Keywords:
density functional theory polarizability frontier molecular orbital theory catalytic properties fermi level
分类号:
O 641.12
DOI:
10.16357/j.cnki.issn1000-5862.2021.05.05
文献标志码:
A
摘要:
为探究团簇Fe3Ni3优化构型的稳定性及其受外场影响的形变情况,并研究其催化性质,使用密度泛函理论中的B3LYP/Lanl2dz(Level)对设计出的初始构型进行全参数优化计算,将含虚频和能量较高的相同构型排除后,最终得到9种稳定的优化构型.从各优化构型的极化率、前线轨道及福井函数分析发现:构型4(3)的极化率最大,原子间的相互作用力最小,构型易发生形变,且构型4(3)的能隙差最小,电子从HOMO轨道向LUMO轨道转移的难度最小,在催化反应过程中反应活性最好; 单重态构型比三重态构型原子间相互作用力更强,结构更致密,不易发生形变; 在三重态构型中Fe原子是前线轨道的主要贡献者,是催化反应过程中的潜在活性位点,具有较强的得电子能力.而单重态构型与之相反,Ni原子是前线轨道的主要贡献者,在催化过程中提供电子的能力较强.
Abstract:
In order to explore the stability of the optimized configuration of clusters Fe3Ni3 and the deformations affected by external fields,and to study its catalytic properties,B3LYP/Lanl2dz(Level)in density functional theory is used to perform full parameter optimization calculations on the designed initial configurations.After excluding configurations with false frequency and the same higher energy,9 stable optimized configurations are finally obtained.From the analysis of the polarizability,frontier molecular orbital theory and Fukui function of each optimized configuration,it is found that the polarizability of configuration 4(3) is the largest,the interaction force between atoms of it is the smallest,thus this configuration is prone to deformation,and the energy gap difference is the smallest,transfer of electrons from the HOMO orbit to the LUMO orbit is the least difficult,it has the best reactivity in the process of catalytic reaction.Compared with the triplet configurations,the interaction between atoms is stronger,the structure is denser,and it is not easy to deform.In the triplet configurations,the Fe atom is the main contributor to the frontier orbital,so it is a potential active siteof clusters Fe3Ni3 in the catalytic reaction process,and it has a strong ability to obtain electrons,while the singlet configurations are the Ni atom.The main contributor to the frontline orbit has a strong ability to provide electrons in the catalytic process.

参考文献/References:

[1] Glasscott M W,Pendergast A D,Goines S,et al.Electrosynthesis of high-entropy metallic glass nanoparticles for designer,multi-functional electrocatalysis[J].Nature Communications,2019,10(1):1-8.
[2] Zuo Lei,Li Ran,Jin Yu,et al.Homogeneous nanoporous Ni particles produced by dealloying Mg-based metallic glass as efficient hydrogen evolution electrocatalyst[J].Journal of the Electrochemical Society,2018,165(3):207-214.
[3] Revesz A,Kis-Toth A,Szommer P,et al.Hydrogen storage,microstructure and mechanical properties of strained Mg65Ni20Cu5Y10 metallic glass[C].Materials Science Forum Trans Tech Publications Ltd,2013,729:74-79.
[4] 秦渝,方志刚,张伟,等.Co3NiB催化析氢活性研究[J].江西师范大学学报:自然科学版,2020,44(1):56-62.
[5] 徐诗浩,方志刚,韩建铭,等.团簇V3B2成键及磁学性质研究[J].广西师范大学学报:自然科学版,2017,35(3):89-96.
[6] Lu Yuanbin,Chen Qingjun,Huang Youlin.Tunable Curie temperature and magnetocaloric effect of FeCrMoCBYNi bulk metallic glass with different crystallized phases[J].Journal of Rare Earths,2019,37(4):74-79.
[7] 蒋达国,李厚德,朱正吼.退火工艺对铁基非晶薄带压应力阻抗效应的影响[J].江西师范大学学报:自然科学版,2007,31(6):639-642.
[8] 秦渝,方志刚,赵璐璐,等.团簇Co3NiB2异构化反应的动力学与热力学研究[J].江西师范大学学报:自然科学版,2021,45(1):67-74.
[9] 李历红,方志刚,赵振宁,等.团簇Ni3CoP电子性质与磁性研究[J].江西师范大学学报:自然科学版,2019,43(2):160-166.
[10] Wu Wenzheng,Jiang Jili,Li Guiwei,et al.Ultrasonic additive manufacturing of bulk Ni-based metallic glass[J].Journal of Non-Crystalline Solids,2019,506:1-5.
[11] Muhammad R,Motohiro Y,Hiroyuki M.Enhanced corrosion resistance of ultrafine-grained Fe-Cr alloys with subcritical Cr contents for passivity[J].Metals-Open Access Metallurgy Journal,2018,8(3):149.
[12] 廖薇,方志刚,赵振宁,等.团簇Fe3Cr3的电子性质与成键[J].辽宁科技大学学报,2019,42(2):101-106.
[13] Liu Jiayi,Li Xuning,Rykov A I,et al.Zinc-modulated Fe-coprussian blue analogues with well-controlled morphlogy for efficient cesium sorption[J].Journal of Materials Chemistry A,2017,5(7):3284-3292.
[14] Yamazaki T,Yamamoto T,Furuya Y,et al.Magnetic and magnetostrictive properties in heat-treated Fe-Co wire for smart material device[J].Mechanical Engineering Journal,2018,5(2):1-9.
[15] Tian Ye,Gorbatoa O I,Borgenstam A,et al.Deformation microstructure and deformation-inducedmartensite in austenitic Fe-Cr-Ni alloys depending on stacking fault energy[J].Metallurgical and Materials Transactions A, 2017,48(1):1-7.
[16] Kumar A,Khatirkar R K,Gupta A,et al.Deci-phering the possible role of strain path on the evolutionof microstructure,texture,and magnetic properties in a Fe-Cr-Ni alloy[J].Metallurgical and Materials Transactions A,2018,49(8):3402-3418.
[17] Tao Xu,Xu Han,Luo Sha,et al.Construction of N-doped carbon nanotube encapsulated active nanoparticles in hierarchically porous carbonized wood frameworks to boost the oxygen evolution reaction[J].Applied Catalysis B:Environmental,2020,279:119367.
[18] Zhang Yanan,Hou Xuebin,Li Xin,et al.FeNi alloy nanoparticles embedded in electrospun nitrogen-doped carbon fibers for efficient oxygen evolution reaction[J].Journal of Colloid and Interface Science,2020,578:805-813.
[19] Yang Liu,Zeng Xiaofei,Wang Di,et al.Biomass-derived FeNi alloy and nitrogen-codoped porous carbons as highly efficientoxygen reduction and evolution bifunctional electrocatalysts for rechargeable Zn-air battery[J].Energy Storage Materials,2018,12:277-283.
[20] Yu Xuegang.Hyperbolic mlti-topology and the basic principle in quantum mechanics[J].Advances in Applied Clifford Lgebras,1999,9(1):109-118.
[21] Beck A.Density-functional thermochemistry.III.Therole of exact exchange[J].The Journal of Chemical Physics,1993,98(7):5648-5652.
[22] 李雯博,方志刚,赵振宁,等.团簇Co5B2反应活性的DFT研究[J].广西师范大学学报:自然科学版,2017,35(4):76-83.
[23] Frisch M J,Trucks G W,Schlegel H B,et al.Gaussian 09,Revision D.01[CP].Wallingford CT:Gaussian,Inc,2010.
[24] Wadt W R,Hay P J.Ab initio effective core potentials for molecular calculations.Potentials for main group elements Na to Bi[J].The Journal of Chemical Physics,1985,82(1):284-298.
[25] Lu Tian,Chen Feiwu.Multiwfn:a multifunctional wavefunction analyzer[J].Comput Chem,2012,33(5):580-592.

相似文献/References:

[1]吴庭慧,方志刚*,王智瑶,等.团簇Co2Mo2P3结构稳定极化率[J].江西师范大学学报(自然科学版),2023,(02):148.[doi:10.16357/j.cnki.issn1000-5862.2023.02.05]
 WU Tinghui,FANG Zhigang*,WANG Zhiyao,et al.The Stable Polarizability of Cluster Co2Mo2P3 Structure[J].Journal of Jiangxi Normal University:Natural Science Edition,2023,(05):148.[doi:10.16357/j.cnki.issn1000-5862.2023.02.05]

备注/Memo

备注/Memo:
收稿日期:2021-05-14
基金项目:国家自然科学基金(51634004),国家级大学生创新创业训练计划(202010146009,202010146016)和辽宁省大学生创新创业训练计划(202110146056,202110146049,202110146040)资助项目.
通信作者:方志刚(1964—),男,辽宁鞍山人,教授,博士,博士生导师,主要从事量子化学、物理化学及表面催化研究.E-mail:lnfzg@163.com
更新日期/Last Update: 2021-10-10