[1]刘 娜,刘芯伶,李俊杰,等.基于曼哈顿距离构建非参数Q矩阵修正方法[J].江西师范大学学报(自然科学版),2021,(06):634-641.[doi:10.16357/j.cnki.issn1000-5862.2021.06.13]
 LIU Na,LIU Xinling,LI Junjie,et al.Constructing a Non-Parametric Q-Matrix Correction Method Based on Manhattan Distance[J].Journal of Jiangxi Normal University:Natural Science Edition,2021,(06):634-641.[doi:10.16357/j.cnki.issn1000-5862.2021.06.13]
点击复制

基于曼哈顿距离构建非参数Q矩阵修正方法()
分享到:

《江西师范大学学报》(自然科学版)[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2021年06期
页码:
634-641
栏目:
心理与教育测量
出版日期:
2021-11-25

文章信息/Info

Title:
Constructing a Non-Parametric Q-Matrix Correction Method Based on Manhattan Distance
文章编号:
1000-5862(2021)06-0634-08
作者:
刘 娜1刘芯伶2李俊杰1曾平飞1俞向军1康春花1*
1.浙江师范大学教师教育学院,浙江 金华 321004; 2.温州技师学院,浙江 温州 325000
Author(s):
LIU Na1LIU Xinling2LI Junjie1ZENG Pingfei1Yu Xiangjun1KANG Chunhua1*
1.College of Teacher Education,Zhejiang Normal University,Jinhua Zhejiang 321004,China; 2.Wenzhou Technician College,Wenzhou Zhejiang 325000,China
关键词:
认知诊断 Q矩阵修正 曼哈顿距离 多级计分
Keywords:
cognitive diagnostics Q-matrix correction Manhattan distance multistage scoring
分类号:
B 841
DOI:
10.16357/j.cnki.issn1000-5862.2021.06.13
文献标志码:
A
摘要:
将被试得分、理想反应距离和被试得分异常原理相结合,并加入属性计分下的被试得分特性,开发了用于多级评分情境下属性计分曼哈顿距离法(SA-MD),在不同条件下验证了SA-MD的稳定性和适宜性.通过模拟研究和实证研究表明:(i)从逻辑推导出SA-MD用于多级评分情境下Q矩阵修正更合理;(ii)在多种条件中,SA-MD 均有较优的修正效果,适用范围更广,稳定性更高;(iii)当小样本测验进行Q矩阵修正时,使用SA-MD方法可获得更优的效果.
Abstract:
Combining the subjects' score characteristics with the ideal response distance and the abnormal principle of subjects' scoring,and adding the subject score characteristics under attribute scoring, the Manhattan distance method for attribute scoring(SA-MD)is developed in multistage scoring situations.The stability and suitability of SA-MD are verified under different conditions.Through simulation and empirical research,the following conclusions are drawn.(i)The rationality of SA-MD for Q-matrix correction in multistage scoring situation is obtained by logical derivation.(ii)In a variety of conditions,SA-MD has a better correction effect,a wide range of application,high stability.(iii)Sa-MD method can obtain better effect when Q matrix is modified for small sample test.

参考文献/References:

[1] Cui Ying,Gierl M J,Chang Huahua.Estimating classification consistency and accuracy for cognitive diagnostic assessment[J].Journal of Educational Measurement,2012,49(1):19-38.
[2] Chiu C,Douglas J A,Li Xiaodong.Cluster analysis for cognitive diagnosis:theory and applications[J].Psychometrika,2009,74(4):633-665.
[3] 丁树良,罗芬,汪文义.Q矩阵理论的扩展[J].心理学探新,2012,32(5):417-422.
[4] Tatsuoka K K.Cognitive assessment:an introduction to the rule space method[M].New York:Routledge,2009.
[5] Rupp A A,Templin J.The effects of Q-matrix misspecification on parameter estimates and classification accuracy in the DINA model[J].Educational and Psychological Measurement,2008,68(1):78-96.
[6] Jimmy D L T,Chiu C Y.A general method of empirical Q-matrix validation[J].Psychometrika,2016,81(2):253-273.
[7] Li Hongli,Suen H K.Constructing and validating a Q-matrix for cognitive diagnostic analyses of a reading test[J].Educational Assessment,2013,18(1):1-25.
[8] Liu Jingchen,Xu Gongjun,Ying Zhiliang.Data-driven learning of Q-matrix[J].Applied Psychological Measurement,2012,36(7):548-564.
[9] Liu Jingchen,Xu Gongjun,Ying Zhiliang.Theory of the self-learning Q-matrix[J].Bernoulli,2013,19(5):1790-1817.
[10] Xiang Rui.Nonlinear penalized estimation of true Q-matrix in cognitive diagnostic models[D].New York:Columbia University,2013.
[11] 汪大勋,高旭亮,蔡艳,等.一种广义的认知诊断Q矩阵修正新方法[J].心理科学,2019,42(4):988-996.
[12] Barnes T.Novel derivation and application of skill matrices:the Q-matrix method[EB/OL].[2021-06-17].https://www.researchgate.net/publication/279957201_Novel_Derivation_and_Application_of_Skill_Matrices.
[13] 喻晓锋,罗照盛,高椿雷,等.使用似然比D2统计量的题目属性定义方法[J].心理学报,2015,47(3):417-426.
[14] 汪大勋,高旭亮,韩雨婷,等.一种简单有效的Q矩阵估计方法开发:基于非参数化方法视角[J].心理科学,2018,41(1):180-188.
[15] Ma Wenchao,Jimmy D L T.An empirical Q-matrix validation method for the sequential generalized DINA model[EB/OL].[2021-06-17].http://hub.hku.hk/handle/10722/274088.
[16] 汪大勋,高旭亮,蔡艳,等.基于类别水平的多级计分认知诊断Q矩阵修正:相对拟合统计量视角[J].心理学报,2019,51(1):1-14.
[17] Sun Jianan,Xin Tao,Zhang Shumei,et al.A polytomous extension of the generalized distance discriminating method[J].Applied Psychological Measurement,2013,37(7):503-521.
[18] 田伟,辛涛.基于等级反应模型的规则空间方法[J].心理学报,2012,44(2):249-262.
[19] 祝玉芳,丁树良.基于等级反应模型的属性层级方法[J].心理学报,2009,41(3):267-275.
[20] 康春花,李元白,曾平飞,等.4种多级计分非参数认知诊断方法的比较[J].中国考试,2018(6):56-62.
[21] Chiu C Y.Statistical refinement of the Q-matrix in cognitive diagnosis[J].Applied Psychological Measurement,2013,37(8):598-618.
[22] Leighton J P,Gierl M J,Hunka S M.The attribute hierarchy method for cognitive assessment:a variation on Tatsuoka's rule-space approach[J].Journal of Educational Measurement,2004,41(3):205-237.
[23] 罗欢,丁树良,汪文义,等.属性不等权重的多级评分属性层级方法[J].心理学报,2010,42(4):528-538.
[24] Kang Chunhua,Yang Yakun,Zeng Pingfei.Q-matrix refinement based on item fit statistic RMSEA[J].Applied Psychological Measurement,2019,43(7):527-542.
[25] 汪文义,宋丽红,丁树良.基于探索性因素分析的Q矩阵标定方法[J].江西师范大学学报:自然科学版,2015,39(2):138-144,170.
[26] 赵云川.非参数认知诊断方法信效度的影响因素:方法比较视角[D].金华:浙江师范大学,2019.
[27] Decarlo L T.On the analysis of fraction subtraction data:the DINA model,classification,latent class sizes,and the Q-matrix[J].Applied Psychological Measurement,2011,35(1):8-26.
[28] Barnes T,Bitzer D,Vouk M.Experimental analysis of the Q-matrix method in knowledge discovery[EB/OL].[2021-06-17].https://link.springer.com/chapter/10.1007%2F11425274_62.
[29] Chen Jinsong,Jimmy D L T,Zhang Zao.Relative and absolute fit evaluation in cognitive diagnosis modeling[J].Journal of Educational Measurement,2013,50(2):123-140.
[30] 宋丽红.DINA 改进模型(R-DINA)的提出及三个诊断模型自动选择机制研究[D].南昌:江西师范大学,2012.
[31] Akaike H.A new look at the statistical model identification[EB/OL].[2021-06-17].https://ieeexplore.ieee.org/document/1100705/.
[32] Schwarz G.Estimating the dimension of a model[J].The Annals of Statistics,1978,6(2):461-464.
[33] Chen Yunxiao,Liu Jingchen,Xu Gongjun,et al.Statistical analysis of Q-matrix based diagnostic classification models[J].Journal of the American Statistical Association,2015,110(510):850-866.
[34] 喻晓锋,罗照盛,秦春影,等.基于作答数据的模型参数和Q矩阵联合估计[J].心理学报,2015,47(2):273-282.
[35] Chen Yinghan,Culpepper S A,Chen Yuguo,et al.Bayesian estimation of the DINA Q matrix[J].Psychometrika,2018,83(1):89-108.
[36] Wang Wenyi,Song Lihong,Ding Shuliang,et al.An EM-based method for Q-matrix validation[J].Applied Psychological Measurement,2018,42(6):446-459.
[37] 涂冬波,蔡艳,戴海琦.基于DINA模型的Q矩阵修正方法[J].心理学报,2012,44(4):558-568.
[38] Chiu C Y,Douglas J A.A nonparametric approach to cognitive diagnosis by proximity to ideal response patterns[J].Journal of Classification,2013,30(2):225-250.
[39] 丁树良,罗芬,汪文义,等.知识状态的不同表达及其应用[J].江西师范大学学报:自然科学版,2017,41(3):296-301.

相似文献/References:

[1]李娟,丁树良,罗芬.基于等级反应模型的广义距离判别法[J].江西师范大学学报(自然科学版),2012,(06):636.
 HU Hai,GAN Deng-wen,WANG Wen-yi,et al.The Generalized Distance Discrimination Based on Graded Response Model[J].Journal of Jiangxi Normal University:Natural Science Edition,2012,(06):636.
[2]丁树良,罗芬.由偏序关系的可达阵导出Hasse图的有效算法——兼谈其在认知诊断中的作用[J].江西师范大学学报(自然科学版),2013,(05):441.
 DING Shu-liang,LUO Fen.An Efficient Algorithm of Deriving Hasse Diagram from the Reachibility Matrix of a Partial Order Relation——Together with Its Application to Cognitive Diagnosis[J].Journal of Jiangxi Normal University:Natural Science Edition,2013,(06):441.
[3]丁树良,汪文义,罗芬.多级评分认知诊断测验蓝图的设计——根树型结构[J].江西师范大学学报(自然科学版),2014,(02):111.
 DING Shu-liang,WANG Wen-yi,LUO Fen.Design of Polytomous Cognitively Diagnostic Test Blueprint——For the Rooted Tree Type[J].Journal of Jiangxi Normal University:Natural Science Edition,2014,(06):111.
[4]丁树良,罗芬,汪文义.多级评分认知诊断测验蓝图的设计——独立型和收敛型结构[J].江西师范大学学报(自然科学版),2014,(03):265.
 DING Shu-liang,LUO Fen,WANG Wen-yi.Design of Polytomous Cognitively Diagnostic Test Blueprint---For the Independent and the Rhombus Attribute Hierarchies[J].Journal of Jiangxi Normal University:Natural Science Edition,2014,(06):265.
[5]艾国金,甘登文,丁树良,等.不定长认知诊断计算机化自适应测验终止规则研究[J].江西师范大学学报(自然科学版),2014,(05):441.
 AI Guo-jin,GAN Deng-wen,DING Shu-liang,et al.Research on Variable-Length Termination Rules for Computerized Adaptive Testing with Cognitive Diagnosis[J].Journal of Jiangxi Normal University:Natural Science Edition,2014,(06):441.
[6]祝玉芳,王黎华,丁树良,等.多策略的多级评分认知诊断方法的开发[J].江西师范大学学报(自然科学版),2015,(04):371.
 ZHU Yufang,WANG Lihua,DING Shuliang,et al.The Development of Multiple-Strategies Cognitive Diagnosis with Polytomous Response[J].Journal of Jiangxi Normal University:Natural Science Edition,2015,(06):371.
[7]艾国金,甘登文,丁树良.计算机化自适应诊断测验双重约束变长终止规则[J].江西师范大学学报(自然科学版),2015,(05):449.
 AI Guojin,GAN Dengwen,DING Shuliang.The Dual Restrictions Variable-Length Termination Rule in Cognitive Diagnosis Computerized Adaptive Testing[J].Journal of Jiangxi Normal University:Natural Science Edition,2015,(06):449.
[8]祝玉芳.GDD-P在进位计数制中的应用[J].江西师范大学学报(自然科学版),2015,(05):453.
 ZHU Yufang.An Application of the GDD-P in Carrying Notation[J].Journal of Jiangxi Normal University:Natural Science Edition,2015,(06):453.
[9]詹沛达,丁树良,王立君.多分属性层级结构下引入逻辑约束的理想掌握模式[J].江西师范大学学报(自然科学版),2017,(03):289.
 ZHAN Peida,DING Shuliang,WANG Lijun.The Ideal Mastery Pattern for Polytomous Attributes with Hierarchical Structure Incorporating Mastery Level Restriction[J].Journal of Jiangxi Normal University:Natural Science Edition,2017,(06):289.
[10]李元白,曾平飞,杨亚坤,等.一种非参数的多策略方法:多策略的海明距离判别法[J].江西师范大学学报(自然科学版),2018,(01):67.[doi:10.16357/j.cnki.issn1000-5862.2018.01.12]
 LI Yuanbai,ZENG Pingfei,YANG Yakun,et al.The Formulation of Multiple-Strategies Hamming Distance Discrimination[J].Journal of Jiangxi Normal University:Natural Science Edition,2018,(06):67.[doi:10.16357/j.cnki.issn1000-5862.2018.01.12]

备注/Memo

备注/Memo:
收稿日期:2021-08-16
基金项目:教育部人文社会科学青年基金(19YJC880122)资助项目.
通信作者:康春花(1974—),女,江西弋阳人,副教授,博士,主要从事心理测量与评价方面的研究.E-mail:akang@zjnu.cn
更新日期/Last Update: 2021-11-25