[1]万仁霞,张宇红,苗夺谦.基于吸收度的三支决策社团划分算法[J].江西师范大学学报(自然科学版),2022,(03):314.[doi:10.16357/j.cnki.issn1000-5862.2022.03.15]
 WAN Renxia,ZHANG Yuhong,MIAO Duoqian.The Absorbance-Based Community Division Algorithm with Three-Way Decision[J].Journal of Jiangxi Normal University:Natural Science Edition,2022,(03):314.[doi:10.16357/j.cnki.issn1000-5862.2022.03.15]
点击复制

基于吸收度的三支决策社团划分算法()
分享到:

《江西师范大学学报》(自然科学版)[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2022年03期
页码:
314
栏目:
信息科学与技术
出版日期:
2022-05-25

文章信息/Info

Title:
The Absorbance-Based Community Division Algorithm with Three-Way Decision
文章编号:
1000-5862(2022)03-0314-08
作者:
万仁霞1张宇红1苗夺谦2
1.北方民族大学数学与信息科学学院,宁夏 银川 750021; 2.同济大学计算机科学与技术系,上海 201804
Author(s):
WAN Renxia1ZHANG Yuhong1MIAO Duoqian2
1.College of Mathematics and Information Science,North Minzu University,Yinchuan Ningxia 750021,China; 2.College of Computer Science and Technology,Tongji University,Shanghai 201804,China
关键词:
社团划分 三支决策 吸收度 重要度矩阵 正域 边界域
Keywords:
community division three-way decisions absorbance importance matrix positive region boundary region
分类号:
TP 301
DOI:
10.16357/j.cnki.issn1000-5862.2022.03.15
文献标志码:
A
摘要:
该文针对社团划分存在的重叠区域问题引入三支决策思想,提出了一种基于吸收度的社团划分算法(3WD-PPOC).3WD-PPOC首先根据网络结构的重要度矩阵进行社团的初始划分,再利用F吸收度来构建社团间的重叠区,即社团边界域,并得到各社团的正域,最后通过P吸收度来完成对在社团边界域中节点的再次划分和社团正域的更新.对比同类算法,3WD-PPOC具有较低的时间复杂度.实验结果进一步表明:3WD-PPOC能够有效地进行社团划分,相比其他社团划分算法,3WD-PPOC表现出更好的社团划分质量,划分后的各社团结构更紧密.该算法对社团重叠节点的划分具有较好的稳定性.
Abstract:
The idea of three-way decision is introduced to solve the overlapping problem of community division,and the community division algorithm(3WD-PPOC)based on absorbance is proposed.In the 3WD-PPOC algorithm,the initial division of communities is firstly carried out according to the importance matrix of the network structure,and then the overlap regions between communities,namely the boundary region of communities,are constructed by the F absorbance,and the positive region of each community is obtained.Finally,the redistribution of the nodes in the community boundary regions and the updating of the community positive regions are completed by P absorbance.Compared with other community division algorithms,3WD-PPOC has lower time complexity.The experimental results further show that 3WD-PPOC can effectively divide communities.Contrast to the comparison algorithms,3WD-PPOC has better community division quality.And the community structure after division is close,which indicates that the algorithm has good stability for dividing the overlapping nodes in community.

参考文献/References:

[1] 吴样平,郭飞,曾明华.基于复杂网络的城市综合交通网络特征分析与优化研究[J].江西师范大学学报(自然科学版),2015,39(3):326-330.
[2] MUTAMBIK I,ALMUQRIN A,LIU Yulong,et al.Gender differentials on information sharing and privacy concerns on social networking sites:perspectives from users[J].Journal of Global Information Management,2021,29(3):50110.
[3] ZHAO Da,YI Yaqiao,HE Qi,et al.Exploring the regulatory mechanism of Nao Tai Fang on vascular dementia's biological network based on cheminformatics and transcriptomics strategy[J].Journal of Ethnopharmacology,2021,274(1):114065.
[4] LÁZÁR Z I,PAPP I,VARGA L,et al.Stochastic graph Voronoi tessellation reveals community structure[J].Physical Review,2017,95(2):22306.
[5] FILIPPO R,CLAUDIO C,FEDERICO C,et al.Defining and identifying communities in networks[J].Proceedings of the National Academy of Sciences of the United States of America,2004,101(9):2658-2663.
[6] NEWMAN M E J.Detecting community structure in networks[J].The European Physical Journal B,2004,38(2):321-330.
[7] XU Shenmeng,WANG Xianwen,LIU Zeyuan,et al.Network structural analysis of technology:a study from patent perspective[J].Journal of Science and Technology Policy in China,2013,4(3):214-235.
[8] KERNIGHAN B W,LIN S.An efficient heuristic procedure for partitioning graphs[J].Bell System Technical Journal,1970,49(2):291-307.
[9] RAGHAVAN U N,ALBERT R,KUMARA S.Near linear time algorithm to detect community structures in large-scale networks[J].Physical Review E Statistical nonlinear and Soft Matter Physics,2007,76(3):36106.
[10] LIN Hanyang,ZHAN Yongzhao,ZHAO Zizheng,et al.Overlapping community detection based on attribute augmented graph[J].Entropy,2021,23(6):680.
[11] 李敏毓,陈兴蜀,尹雅丽,等.面向多源社交网络的社团结构特征研究[J].工程科学与技术,2017,49(S2):195-202.
[12] LANCICHINETTI A,FORTUNATO S,KERTÉSZ J.Detecting the overlapping and hierarchical community structure of complex networks[J].New Journal of Physics,2008,11(3):19-44.
[13] 郭娜,郑晓艳.基于最大生成树的重叠社团发现算法[J].计算机应用研究,2020,37(S2):170-172.
[14] LIU Dun,YAO Yiyu,LI Tianrui.Three-way investment decisions with decision-theoretic rough sets[J].International Journal of Computational Intelligence Systems,2011,4(1):66-74.
[15] XING Ruikang,LI Chenghai,ZHANG Xin,et al.Multigranulation decision-theoretic rough set based on incomplete interval-valued information systems[EB/OL].[2021-11-18].https://kns.cnki.net/KCMS/detail/detail.aspx?dbcode=IPFD&filename=LRCM201808001057.
[16] ANDREAS M,RUDOLF S.Vague information processing[J].HMD Praxis der Wirtschaftsinformatik,2018,55(3):465-466.
[17] 杨雪洁,曹风云,陈洁,等.基于子模优化的边界域处理社团发现算法[J].电子测量与仪器学报,2020,34(4):111-117.
[18] 方莲娣,张燕平,陈洁,等.基于三支决策的非重叠社团划分[J].智能系统学报,2017,12(3):293-300.
[19] 聂祥林,张玉梅,吴晓军,等.基于节点依赖度和相似社团融合的社团结构发现算法[J].计算机工程与科学,2017,39(7):1273-1280.
[20] 陈东明,王云开,黄新宇,等.基于社团密合度的复杂网络社团发现算法[J].东北大学学报(自然科学版),2019,40(2):186-191.
[21] ANIRBAN B,MARK R.Sharp transition of the invertibility of the adjacency matrices of sparse random graphs[J].Probability Theory and Related Fields,2021,180(5):233-308.
[22] 吴卫江,周静,李国和.一种基于节点重要度的社团划分算法[J].中南民族大学学报(自然科学版),2016,35(1):119-122.
[23] 胡峰,张苗,于洪.基于三支决策的主动学习方法[J].控制与决策,2019,34(4):718-726.
[24] 姚一豫,祁建军,魏玲.基于三支决策的形式概念分析、粗糙集与粒计算[J].西北大学学报(自然科学版),2018,48(4):477-487.
[25] SUN Bingzhen,CHEN Xiangtang,ZHANG Liye,et al.Three-way decision making approach to conflict analysis and resolution using probabilistic rough set over two universes[J].Information Sciences,2020,507:809-822.
[26] YU Hong,WANG Xincheng,WANG Guoyin.An active three-way clustering method via low-rank matrices for multi-view data[J].Information Sciences,2020,507:823-839.
[27] 唐益明,丰刚永,任福继,等.面向结构复杂数据集的模糊聚类有效性指标[J].电子测量与仪器学报,2018,32(4):119-127.
[28] NEWMAN M E J,GIRVAN M.Finding and evaluating community structure in networks[J].Physical Review E:Statistical,Nonlinear,and Soft Matter Physics,2004,69(2):26113.
[29] SHAO Chenxi,DUAN Yubing.Identifying community structure in complex networks[J].International Journal of Modern Physics B,2015,29(19):65-67.
[30] ZACHARY W.An information flow model for conflicand fission in small groups[J].Journal of Anthropological Research,1977,33(4):452-473.

备注/Memo

备注/Memo:
收稿日期:2022-01-05
基金项目:国家自然科学基金(61662001),中央高校基本科研业务费专项资金(FWNX04)和宁夏自然科学基金(2021AAC03203)资助项目.
作者简介:万仁霞(1975—),男,江西南昌人,教授,博士,博士生导师,主要从事信息系统、数据挖掘知识学习和智能计算研究.E-mail:wanrx1022@nmu.edu.cn
更新日期/Last Update: 2022-05-25