参考文献/References:
[1] PAN Tiancheng,LI Guangjun.Digital control of a galvanometer based on repetitive compensation[EB/OL].[2021-10-10].https://kns.cnki.net/KCMS/detail/detail.aspx?dbcode=IPFD&filename=LRCM201511003004.
[2] XIAO Hui,CHEN Xu.Multi-band beyond-Nyquist disturbance rejection on a galvanometer scanner system[EB/OL].[2021-10-10].https://ieeexplore.ieee.org/document/8014263.
[3] MNERIE C A,PREITL S,DUMA V F.Performance enhancement of galvanometer scanners using extended control structures[EB/OL].[2021-10-13].https://ieeexplore.ieee.org/document/6608952.
[4] MNERIE C A,DUMA V F.Mathematical model of a galvanometer based scanner:simulations and experiments[EB/OL].[2021-10-15].https://www.spiedigitallibrary.org/conference-proceedings-of-spie/8789/1/Mathematical-model-of-a-galvanometer-based-scanner-simulations-and/10.1117/12.2020462.short?SSO=1.
[5] 钱荣荣,骆敏舟,赵海江,等.永磁同步电机新型自适应滑模控制[J].控制理论与应用,2013,30(11):1414-1421.
[6] KIM E,KIM J,NGUYEN H H,et al.Compensation of parameter uncertainty using an adaptive sliding mode control strategy for an interior permanent magnet synchronous motor drive[J].IEEE Access,2019,7:11913-11923.
[7] 侯利民,任一夫,刘恒飞,等.基于无速度传感器的永磁同步电机滑模自抗扰控制[J].系统仿真学报,2019,31(5):963-970.
[8] 郑长明,张加胜,陈荣.基于改进扰动补偿趋近律的离散滑模控制[J].控制与决策,2019,34(4):880-884.
[9] 郭小定,柏达,周少武,等.一种新型趋近律的永磁同步电机滑模控制[J].控制工程,2018,25(10):1865-1870.
[10] 郑晓晨.伺服电机NCS神经网络PID趋近律滑模控制[J].火力与指挥控制,2020,45(8):22-29.
[11] JIN Hongyan,ZHAO Ximei.Extended Kalman filter-based disturbance feed-forward compensation considering varying mass in high-speed permanent magnet linear synchronous motor[J].Electrical Engineering,2019,101(2):537-544.
[12] 张毅,陈光胜.高速扫描振镜动力学控制系统的建模与仿真[J].建模与仿真,2020,9(2):116-124.
[13] GAO Weibing,WANG Yufu,HOMAIFA A.Discrete-time variable structure control systems[J].IEEE Transactions on Industrial Electronics,2002,42(2):117-122.
[14] 刘金琨.先进PID控制MATLAB仿真[M].2版.北京:电子工业出版社,2004.
[15] 刘金琨.滑模变结构控制MATLAB仿真[M].北京:清华大学出版社,2005.