参考文献/References:
[1] 王仁武,孟现茹.图片情感分析研究综述[J].图书情报知识,2020(3):119-127.
[2] JIA Jia,WU Sen,WANG Xiaohui,et al.Can we understand van gogh's mood?learning to infer affects from images in social networks[EB/OL].[2021-12-12].https://doi.org/10.1145/2393347.2396330.
[3] BORTH D,JI Rongrong,CHEN Tao,et al.Large-scale visual sentiment ontology and detectors using adjective noun pairs[EB/OL].[2021-12-11].https://dl.acm.org/doi/pdf/10.1145/2502081.2502282.
[4] ZHAO Sicheng,GAO Yue,JIANG Xiaolei,et al.Exploring principles-of-art features for image emotion recognition[EB/OL].[2021-12-11].https://dl.acm.org/doi/epdf/10.1145/2647868.2654930.
[5] PLUTCHIK R.A general psycho evolutionary theory of emotion[M].Pittsburgh:Academic Press,1980:3-33.
[6] ZHANG Minling,ZHOU Zhihua.A review on multi-label learning algorithms[J].IEEE Transactions on Knowledge and Data Engineering,2013,26(8):1819-1837.
[7] ZHOU Ying,XUE Hui,GENG Xin.Emotion distribution recognition from facial expressions[EB/OL].[2021-12-10].https://dl.acm.org/doi/10.1145/2733373.2806328.
[8] JIA Xiuyi,ZHENG Xiang,LI Weiwei,et al.Facial emotion distribution learning by exploiting low-rank label correlations locally[EB/OL].[2021-12-04].https://ieeexplore.ieee.org/document/8953790.
[9] ZHOU Deyu,ZHANG Xuan,ZHOU Yin,et al.Emotion distribution learning from texts[EB/OL].[2021-12-12].https://www.researchgate.net/publication/311990212_Emotion_Distribution_Learning_from_Texts.
[10] XIONG Haitao,LIU Hongfu,ZHONG Bineng,et al.Structured and sparse annotations for image emotion distribution learning[J].Proceedings of the AAAI Conference on Artificial Intelligence,2019,33(1):363-370.
[11] MIKELS J A,FREDRICKSON B L,LARKIN G R,et al.Emotional category data on images from the International Affective Picture Sysem[J].Behavior Research Methods,2005,37(4):626-630.
[12] GONG Rui,WANG Qing,HAI Yan,et al.Investigation on factors to influence color emotion and color preference responses[J].Optik,2017,136:71-78.
[13] MATTHEWS T,NIXON M S,NIRANJAN M.Enriching texture analysis with semantic data[EB/OL].[2021-12-15].https://dl.acm.org/doi/10.1109/CVPR.2013.165.
[14] YAO Lei,SURYANARAYAN P,QIAO Mu,et al.Oscar:on-site composition and aesthetics feedback through exemplars for photographers[J].International Journal of Computer Vision,2012,96(3):353-383.
[15] COLOMBO C,DEL BIMBO A,PALA P.Semantics in visual information retrieval[J].Ieee Multimedia,1999,6(3):38-53.
[16] MACHAJDIK J,HANBURY A.Affective image classification using features inspired by psychology and art theory[EB/OL].[2021-12-19]. https://dl.acm.org/doi/10.1145/1873951.1873965.
[17] RAO Tianrong,XU Min,XU Dong.Learning multi-level deep representations for image emotion classification[J].Neural Processing Letters,2020,51(3):2043-2061.
[18] YANG Jufeng,SHE Dongyu,SUN Ming.Joint image emotion classification and distribution learning via deep convolutional neural network[EB/OL].[2021-12-19].https://dl.acm.org/doi/10.5555/3172077.3172345.
[19] GENG Xin.Label distribution learning[J]. IEEE Transactions on Knowledge and Data Engineering,2016,28(7):1734-1748.
[20] 曾雪强,罗明珠,陈素芬,等.基于自适应多重多元回归的人脸年龄估计[J].江西师范大学学报(自然科学版),2019,43(1):68-75.
[21] ZHANG Yuxiang,FU Jiamei,SHE Dongyu,et al.Text emotion distribution learning via multi-task convolutional neural network[EB/OL].[2021-12-12].https://dl.acm.org/doi/abs/10.5555/3304222.3304409.
[22] HE Tao,JIN Xiaoming.Image emotion distribution learning with graph convolutional networks[EB/OL].[2021-12-12].https://dl.acm.org/doi/pdf/10.1145/3323873.3326593.
[23] SIMONYAN K,ZISSERMAN A.Very deep convolutional networks for large-scale image recognition[EB/OL].[2021-12-18].https://arxiv.org/pdf/1409.1556.pdf.
[24] GENG Xin,YIN Chao,ZHOU Zhihua.Facial age estimation by learning from label distributions[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2013,35(10):2401-2412.
[25] PENG Kuanchuan,CHEN Tsuhan,SADOVNIK A,et al.A mixed bag of emotions:model,predict,and transfer emotion distributions[EB/OL].[2021-12-12].https://ieeexplore.ieee.org/document/7298687/.
[26] MACHAJDIK J,HANBURY A.Affective image classification using features inspired by psychology and art theory[EB/OL].[2021-12-12].https://dl.acm.org/doi/10.1145/1873951.1873965.
[27] CAMPOS V,SALVADOR A,GIR-I-NIETO X,et al.Diving deep into sentiment: understanding fine-tuned CNNs for visual sentiment prediction[EB/OL].[2021-12-12].https://arxiv.org/pdf/1508.05056.pdf.
[28] YANG Jingyuan,LI Jie,LI Leida,et al.A circular-structured representation for visual emotion distribution learning[EB/OL].[2021-12-12].https://arxiv.org/abs/2106.12450.
[29] YANG Jufeng,SUN Ming,SUN Xiaoxiao.Learning visual sentiment distributions via augmented conditional probability neural network[EB/OL].[2021-12-12].https://dl.acm.org/doi/10.5555/3298239.3298273.
[30] GAO Binbin,XING Chao,XIE Chenwei,et al.Deep label distribution learning with label ambiguity[J].IEEE Transactions on Image Processing,2017,26(6):2825-2838.
[31] KRIZHEVSKY A,SUTSKEVER I,HINTON G E.Imagenet classification with deep convolutional neural networks[J].Communications of the ACM,2017,60(6):84-90.
[32] HE Kaiming,ZHANG Xiangyu,REN Shaoqing,et al.Deep residual learning for image recognition[EB/OL].[2021-12-12].https://ieeexplore.ieee.org/iel7/7776647/7780329/07780459.pdf.