参考文献/References:
[1] 张悦.基于卷积神经网络的双源遥感数据语义分割的方法研究[D].哈尔滨:哈尔滨工业大学,2018.
[2] 范丽琪,宣杰,邓小丽.92例糖尿病性视网膜病变患者术前眼底造影结果评估及护理[J].影像研究与医学应用,2019,3(16):5-6.
[3] 张皓,吴建鑫.基于深度特征的无监督图像检索研究综述[J].计算机研究与发展,2018,55(9):1829-1842.
[4] 游齐靖.机器学习在染色体和眼底图像分析中的应用[D].南京:南京航空航天大学,2020.
[5] 张翔翔.相关噪声下基于深度学习的卷积码译码器的研究[D].北京:北京邮电大学,2019.
[6] JAAFAR H F,NANDI A K,AL-NUAIMY W.Detection of exudates in retinal images using a pure splitting technique[EB/OL].[2021-10-17].https://ieeexplore.ieee.org/document/5626014/.
[7] IMANI E,POURREZA H R.A novel method for retinal exudate segmentation using signal separation algorithm[J].Computer Methods and Programs in Biomedicine,2016,133:195-205.
[8] FRAZ M M,JAHANGIR W,ZAHID S,et al.Multiscale segmentation of exudates in retinal images using contextual cues and ensemble classification[J].Biomedical Signal Processing and Control,2017,35:50-62.
[9] WELFER D,SCHARCANSKI J,MARINHO D R.A coarse-to-fine strategy for automatically detecting exudates in color eye fundus images[J].Computerized Medical Imaging and Graphics,2010,34(3):228-235.
[10] HARANGI B,HAJDU A.Automatic exudate detection by fusing multiple active contours and regionwise classification[J].Computers in Biology and Medicine,2014,54:156-171.
[11] MO Juan,ZHANG Lei,FENG Yangqin.Exudate-based diabetic macular edema recognition in retinal images using cascaded deep residual networks[J].Neurocomputing,2018,290:161-171.
[12] DAS V,PUHAN N B.Tsallis entropy and sparse reconstructive dictionary learning for exudate detection in diabetic retinopathy[J].Journal of Medical Imaging,2017,4(2):024002.
[13] LIU Qing,ZOU Beiji,CHEN Jie,et al.A location-to-segmentation strategy for automatic exudate segmentation in colour retinal fundus images[J].Computerized Medical Imaging and Graphics,2017,55(S1):78-86.