参考文献/References:
[1] SONG Kaitao,WEI Xiushen,SHU Xiangbo,et al.Bi-modal progressive mask attention for fine-grained recognition[J].IEEE Transactions on Image Processing,2020,29:7006-7018.
[2] KRIZHEVSKY A,SUTSKEVER I,HINTON G E.ImageNet classification with deep convolutional neural networks[J].Communications of the ACM,2017,60(6):84-90.
[3] SHI Xingjian,CHEN Zhourong,WANG Hao,et al.Convolutional LSTM network:a machine learning approach for precipitation nowcasting[EB/OL].[2021-12-17].https://arxiv.org/pdf/1506.042.pdf.
[4] HE Xiangteng,PENG Yuxin.Fine-grained image classification via combining vision and language[EB/OL].[2021-11-13].https://arxiv.org/abs/1704.02792v1.
[5] GAO Yu,HAN Xintong,WANG Xun,et al.Channel interaction networks for fine-grained image categorization[J].AAAI-20 Technical Track 7,2020,34(7):10818-10825.
[6] ZHUANG Peiqin,WANG Yali,QIAO Yu.Learning attentive pairwise interaction for fine-grained classification[J].AAAI-20 Technical Track 7,2020,34(7):13130-13137.
[7] HU Tao,Qi Honggang.See better before looking closer:weakly supervised data augmentation network for fine-grained visual classification[EB/OL].[2021-11-12].https://arxiv.org/abs/1901.09891v1.
[8] ZHENG Heliang,FU Jianlong,ZHA Zhengjun,et al.Looking for the devil in the details:learning trilinear attention sampling network for fine-grained image recognition[EB/OL].[2021-11-15].https://arxiv.org/abs/1903.06150v2.
[9] DU Ruoyi,CHANG Dongliang,BHUNIA A K,et al.Fine-grained visual classification via progressive multi-granularity training of jigsaw patches[EB/OL].[2021-10-19].https://arxiv.org/abs/2003.03836v2.
[10] DING Yifeng,MA Zhanyu,WEN Shaoguo,et al.AP-CNN:weakly supervised attention pyramid convolutional neural network for fine-grained visual classification[J].IEEE Transactions on Image Processing,2021,30:2826-2836.
[11] BEHERA A,WHARTON Z,HEWAGE P,et al.Context-aware attentional pooling(cap)for fine-grained visual classification[EB/OL].[2021-10-13].https://doi.org/10.48550/arXiv.2101.06635.
[12] JI Ruyi,WEN Longyin,ZHANG Libo,et al.Attention convolutional binary neural tree for fine-grained visual categorization[EB/OL].[2021-11-10].https://ieeexplore.ieee.org/document/9157539.
[13] HE Ju,CHEN Jieneng,LIU Shuai,et al.TransfG:a transformer architecture for fine-grained recognition[EB/OL].[2021-12-03].https://doi.org/10.48550/arXiv.2103.07976.
[14] CHEN Tianshui,LIN Liang,CHEN Riquan,et al.Knowledge-embedded representation learning for fine-grained image recognition[EB/OL].[2021-12-09].https://doi.org/10.48550/arXiv.1807.00505.
[15] SUN Liang,GUAN Xiang,YANG Yang,et al.Text-embedded bilinear model for fine-grained visual recognition[EB/OL].[2021-10-13].https://doi.org/10.1145/3394171.3413638.
[16] ZHU Linchao,YANG Yi.ActBERT:learning global-local video-text representations[EB/OL].[2021-10-18].https://doi.org/10.48550/arXiv.2011.07231.
[17] MNIH V,HEESS N,GRAVES A.Recurrent models of visual attention[EB/OL].[2021-10-18].http://de.arxiv.org/pdf/1406.6247.
[18] WOO S,PARK J,LEE J Y,et al.CBAM:convolutional block attention module[EB/OL].[2021-10-16].https://arxiv.org/pdf/1807.06521.pdf.
[19] PARK J,WOO S,LEE J Y,et al.BAM:bottleneck attention module[EB/OL].[2021-11-13].https://arxiv.org/pdf/1807.06514.pdf
[20] WAH C,BRANSON S,WELINDER P,et al.The CALTECH-UCSD birds-200-2011 dataset[EB/OL].[2021-11-16]. https://citeseerx.ist.psu.edu/viewdoc/download; jsessionid=FF4D49EB69FF280011EEF1AA90D8050A?doi=10.1.1.372.852&rep=rep1&type=pdf.
相似文献/References:
[1]何金宝,胡秋宝,付志超,等.基于DCGAN和改进YOLOv5s的桥梁表面缺陷检测识别[J].江西师范大学学报(自然科学版),2022,(06):655.[doi:10.16357/j.cnki.issn1000-5862.2022.06.14]
HE Jinbao,HU Qiubao,FU Zhichao,et al.The Bridge Apparent Defects Detection Based on DCGAN and Improved YOLOv5s[J].Journal of Jiangxi Normal University:Natural Science Edition,2022,(04):655.[doi:10.16357/j.cnki.issn1000-5862.2022.06.14]