[1]丁树良,罗 芬,汪文义,等.非结构化完备Q阵的构造与判定[J].江西师范大学学报(自然科学版),2022,(05):441-446.[doi:10.16357/j.cnki.issn1000-5862.2022.05.01]
 DING Shuliang,LUO Fen,WANG Wenyi,et al.The Structure of Unstructured Complete Q Matrices and Their Identification[J].Journal of Jiangxi Normal University:Natural Science Edition,2022,(05):441-446.[doi:10.16357/j.cnki.issn1000-5862.2022.05.01]
点击复制

非结构化完备Q阵的构造与判定()
分享到:

《江西师范大学学报》(自然科学版)[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2022年05期
页码:
441-446
栏目:
心理与教育测量
出版日期:
2022-09-25

文章信息/Info

Title:
The Structure of Unstructured Complete Q Matrices and Their Identification
文章编号:
1000-5862(2022)05-0441-06
作者:
丁树良罗 芬汪文义李 佳熊建华
(江西师范大学计算机信息工程学院,江西 南昌 330022)
Author(s):
DING ShuliangLUO FenWANG WenyiLI JiaXIONG Jianhua
(School of Computer and Information Engineering,Jiangxi Normal University,Nanchang Jiangxi 330022,China)
关键词:
非结构化完备Q矩阵 判定定理 结构 布尔格
Keywords:
non-structured complete Q matrix criteria theorem structure Boolean lattice
分类号:
B 841
DOI:
10.16357/j.cnki.issn1000-5862.2022.05.01
文献标志码:
A
摘要:
将向量版本的非结构化完备Q矩阵(NCQM)的判别定理拓展为矩阵版本.当K=3时对于线性型层级结构,NCQM的结构是布尔格.对于任意K和其他层级结构这个结果也被证明成立.
Abstract:
The vector-version of the criteria theorem on non-structured completeness Q matrix(NCQM)is expanded through the matrice-version of the criteria theorem.When K=3,the structure of NCQM for linear hierarchy type is a Boolean lattice.This result is true for any K and other hierarchical structures,and the fact is proved.

参考文献/References:

[1] 王晓庆,丁树良,罗芬.认知诊断中Q矩阵及其作用[J].心理科学,2019,42(3):739-746.
[2] CAI Yan,TU Dongbo,DING Shuliang.Theorems and methods of a complete Q matrix with attribute hierarchies under restricted Q-matrix design[J].Frontiers in Psychology,2018,9:1413.
[3] KÖHN H F,CHIU C Y.A unified theory of the completeness of Q-matrices for the DINA model[J].Journal of Classification,2021,38(3):500-518.
[4] LEIGHTON J P,GIERL M J,HUNKA S M.The attribute hierarchy method for cognitive assessment:a variation on Tatsuoka's rule-space approach[J].Journal of Educational Measurement,2004,41(3):205-237.
[5] LIU Ren,HUGGINS-MANLEY A C.The specification of attribute structures and its effects on classification accuracy in diagnostic test design[EB/OL].[2021-12-16].https://www.doc88.com/p-2804874504068.html.
[6] TATSUOKA K K.Architecture of knowledge structure and cognitive diagnosis:a statistical pattern recognition and classification approach[EB/OL].[2021-12-19].https://psycnet.apa.org/record/1995-97594-013.
[7] TATSUOKA K K.Cognitive assessment:an introduction to the rule space method[M].New York:Routledge,2009.
[8] DE LA TORRE J,HONG Yuan,DENG Weiling.Factors affecting the item parameter estimation and classification accuracy of the DINA model[J].Journal of Educational Measurement,2010,47(2):227-249.
[9] 黄玉,罗芬,熊建华,等.多级评分多策略认知诊断方法[J].江西师范大学学报(自然科学版),2019,43(4):376-381.
[10] WANG Chun.On interim cognitive diagnostic computerized adaptive testing in learning context[J].Applied Psychological Measurement,2021,45(4):235-252.
[11] 左孝凌,李为鑑,刘永才.离散数学[M].上海:上海科学技术文献出版社,1982.
[12] 汪大勋,高旭亮,蔡艳,等.一种广义的认知诊断Q矩阵修正新方法[J].心理科学,2019,42(4):988-996.
[13] 丁树良,罗芬,汪文义,等.扩张算法及其在认知诊断中的作用[J].教育测量与评估双语季刊,2021,2(2):14-23.
[14] 丁树良,祝玉芳,林海菁,等.Tatsuoka Q矩阵理论的修正[J].心理学报,2009,41(2):175-181.
[15] 丁树良,罗芬,汪文义,等.0-1评分认知诊断测验设计[J].江西师范大学学报(自然科学版),2019,43(5):441-447.
[16] XIONG Jiahua,LUO Zhaosheng,LUO Guanzhong,et al.Data-driven Q-matrix learning based on Boolean matrix factorization in cognitive diagnostic assessment[J].British Journal of Mathematical and Statistical Psychology,2022,75(3):638-667.

备注/Memo

备注/Memo:
收稿日期:2022-07-10
基金项目:国家自然科学基金(62067005,61967009,31500909,31360237)资助项目.
作者简介:丁树良(1949—),男,江西樟树人,教授,主要从事计算机辅助教学和心理测量方面的研究.E-mail:ding06026@163.com
更新日期/Last Update: 2022-09-25