参考文献/References:
[1] GELADI P,KOWALSKI B R.Partial least squares regression:a tutorial [J].Analytica Chimica Acta,1986,185:1-17.
[2] YOU Xinge,MOU Yi,YU Shujian,et al.Mixed-norm partial least squares [J].Chemometrics and Intelligent Laboratory Systems,2016,152:42-53.
[3] MALTHOUSE E C,TAMHANE A C,MAH R S H.Nonlinear partial least squares [J].Computers & Chemical Engineering,1997,21(8):875-890.
[4] LIU Hongbin,YANG Chong,BENGT C,et al.Dynamic nonlinear partial least squares modeling using Gaussian process regression [J].Industrial & Engineering Chemistry Research,2019,58(36):16676-16686.
[5] 尚栋,孙兰香,齐立峰,等.基于循环变量筛选非线性偏最小二乘的LIBS铁矿浆定量分析 [J].中国激光,2021,48(21):171-179.
[6] MA Hao,WANG Yan,JI Zhicheng.A novel dynamic nonlinear partial least squares based on the cascade structure [J].International Journal of Robust and Nonlinear Control,2022,32(6):3584-3605.
[7] 贾润达,毛志忠,王福利.基于KPLS模型的间歇过程产品质量控制 [J].化工学报,2013,64(4):1332-1339.
[8] JIAO Jianfang,ZHAO Ning,WANG Guang,et al.A nonlinear quality-related fault detection approach based on modified kernel partial least squares [J].ISA Transactions,2016,66:275-283.
[9] ZHU Bao,CHEN Zhongsheng,HE Yanlin,et al.A novel nonlinear functional expansion based PLS(FEPLS)and its soft sensor application [J].Chemometrics and Intelligent Laboratory Systems,2017,161:108-117.
[10] WANG Yanxia,CAO Hui,ZHOU Yan,et al.Nonlinear partial least squares regressions for spectral quantitative analysis [J].Chemometrics and Intelligent Laboratory Systems,2015,148:32-50.
[11] 鲁庆华,任康乐,周凤玺.基于偏最小二乘法实现非线性回归分析 [J].甘肃科技,2005,21(11):146-148.
[12] MERINO A,GARCIA-ALVAREZ D,SAINZ-PALMERO G,et al.Knowledge based recursive non-linear partial least squares(RNPLS)[J].ISA Transactions,2020,100:481-494.
[13] 李雄威,郭晓雅,李庚达,等.一种基于非线性偏最小二乘的风电机组齿轮箱状态监测方法 [J].可再生能源,2022,40(10):1346-1351.
[14] LAVOIE F B,MUTEKI K,GOSSELIN R.A novel robust NL-PLS regression methodology [J].Chemometrics and Intelligent Laboratory Systems,2018,184:71-81.
[15] 谢文龙.三次样条函数的构造方法 [J].江南学院学报,2000,15(2):90-93.
[16] INDAHL U.A twist to partial least squares regression [J].Journal of Chemometrics,2005,19(1):32-44.
[17] LAVOIE F B,MUTEKI K,GOSSELIN R.Generalization of powered-partial-least-squares [J].Chemometrics and Intelligent Laboratory Systems,2018,179:1-11.
[18] PENG Shan,PENG Silong,TANG Liang,et al.A nonlinear partial least squares with slice transform based piecewise linear inner relation [J].Chemometrics and Intelligent Laboratory Systems,2015,143:97-110.
[19] LI Fachao,YANG Kuo.Research of the regression method based on quasi-linear function [EB/OL].[2022-08-13].https://ieeexplore.ieee.org/document/5662989/.
[20] WOLD S,RUHE A,WOLD H,et al.The collinearity problem in linear regression:the partial least squares(PLS)approach to generalized inverses [J].SIAM Journal on Scientific and Statistical Computing,1984,5(3):735-743.
[21] SZÉKELY G J,RIZZO M L,BAKIROV N K.Measuring and testing dependence by correlation of distances [J].Annals of Statistics,2007,35(6):2769-2794.