参考文献/References:
[1] 王玉洁,周波涛,任玉玉,等.全球气候变化对我国气候安全影响的思考 [J].应用气象学报,2016,27(6):750-758.
[2] 钱维宏,张宗婕.南方持续低温冻雨事件预测的前期信号 [J].地球物理学报,2012,55(5):1501-1512.
[3] 钱维宏.如何提高天气预报和气候预测的技巧?[J].地球物理学报,2012,55(5):1532-1540.
[4] BABU C N,REDDY B E.Predictive data mining on ave-rage global temperature using variants of ARIMA models [EB/OL].[2021-01-16].https://ieeexplore.ieee.org/document/6215607.
[5] NASUTION T H,HARAHAP L A.Predict the percentage error of LM35 temperature sensor readings using simple linear regression analysis[EB/OL].[2021-01-16].https://ieeexplore.ieee.org/document/9230472.
[6] 程鹏宇,赵嘉,韩龙哲,等.双向多尺度LSTM的短时温度预测 [J].江西师范大学学报(自然科学版),2022,46(2):134-139.
[7] XU Ting,GONG Xin,LENG Miao.Study on prediction model of cement precalciner outlet temperature [EB/OL].[2021-01-19]. https://ieeexplore.ieee.org/document/9326782.
[8] 肖勇,郑楷洪,郑镇境,等.基于多尺度跳跃深度长短期记忆网络的短期多变量负荷预测 [J].计算机应用,2021,41(1):231-236.
[9] ELMAN J L.Finding structure in time [J].Cognitive Science,1990,14(2):179-211.
[10] WANG Hongkang,LI Li,WU Yong,et al.Recurrent neural network model for prediction of microclimate in solar greenhouse [J].IFAC-Papers on Line,2018,51(17):790-795.
[11] HOCHREITER S,SCHMIDHUB J.Long Short-Term Memory [J].Neural Computation,1997,9(8):1735-1780.
[12] KHAN M,SIDDIQUE M,SAKIB S,et al.Prediction of temperature and rainfall in bangladesh using long short-term memory recurrent neural networks [EB/OL].[2021-01-26].https://ieeexplore.ieee.org/document/9254585.
[13] ZHANG Qin,WANG Hui,DONG Junyu,et al.Prediction of sea surface temperature using long short-term memory[J].IEEE Geoscience and Remote Sensing Letters,2017,14(10):1745-1749.
[14] MILAD A,ADWAN I,MAJEED S A,et al.Emerging technologies of deep learning models development for pavement temperature prediction [J].IEEE Access,2012,9(1):23840-23849.
[15] HAN Xiao,ZHANG Chunhong,JI Yang,et al.A dilated recurrent neural network-based model for graph embedding[J].IEEE Access,2019,7:32085-32092.
[16] CHEN Junbin,HUANG Ruyi,ZHAO Kun,et al.Multiscale convolutional neural network with feature alignment for bearing fault diagnosis [J].IEEE Transactions on Instrumentation and Measurement,2021,70:1-10.
[17] YAN Lecun,BOTTOU L,et al.Gradient-based learning applied to document recognition[J].Proceedings of the IEEE,1998,86(11):2278-2324.
[18] 王坤,殷明明,俞鸿飞,等.低资源维汉神经机器翻译研究 [J].江西师范大学学报(自然科学版),2019,43(6):638-642.
[19] 董永峰,孙跃华,高立超,等.基于改进一维卷积和双向长短期记忆神经网络的故障诊断方法 [J].计算机应用,2022,42(4):1207-1215.
[20] 赖金水,万中英,曾雪强.基于情感轮和多任务卷积神经网络的图像情感分布学习 [J].江西师范大学学报(自然科学版),2022,46(4):363-371.
[21] SUNNY M A I,MASWOOD M M S,ALHARBI A G.Deep learning-based stock price prediction using LSTM and bi-directional LSTM model[C]//NILES 2020 Committee. The 2nd Novel Intelligent and Leading Emerging Sciences Conference.Giza:IEEE Publishing,2020:87-92.
[22] LILLICRAP T P,SANTORO A.Backpropagation through time and the brain [J].Current Opinion in Neurobiology,2019,55:82-89.
[23] 王永志,刘博,李钰.一种基于LSTM神经网络的电力负荷预测方法 [J].实验室研究与探索,2020,39(5):41-45.
[24] CHEN Xiaohan,ZHANG Baike,GAO Dong.Bearing fault diagnosis base on multi-scale CNN and LSTM model [J].Journal of Intelligent Manufacturing,2021,32(4):971-987.
[25] JIN Ning,WU Jianxian,MA Xiang,et al.Multi-task learning model based on multi-scale CNN and LSTM for sentiment classification [J].IEEE Access,2020,8:77060-77072.