[1]董朝丽,陆万春*.Markov切换下含疫苗接种和垂直感染的随机SIRS模型性质[J].江西师范大学学报(自然科学版),2023,(04):336-341.[doi:10.16357/j.cnki.issn1000-5862.2023.04.02]
 DONG Zhaoli,LU Wanchun*.The Properties of Stochastic SIRS Model with Vaccination and Vertical Transmission Under Markovian Switching[J].Journal of Jiangxi Normal University:Natural Science Edition,2023,(04):336-341.[doi:10.16357/j.cnki.issn1000-5862.2023.04.02]
点击复制

Markov切换下含疫苗接种和垂直感染的随机SIRS模型性质()
分享到:

《江西师范大学学报》(自然科学版)[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2023年04期
页码:
336-341
栏目:
数学与应用数学
出版日期:
2023-07-25

文章信息/Info

Title:
The Properties of Stochastic SIRS Model with Vaccination and Vertical Transmission Under Markovian Switching
文章编号:
1000-5862(2023)04-0336-06
作者:
董朝丽1陆万春2*
(1.江西农业大学南昌商学院,江西 赣江新区 332020; 2.萍乡学院数学系,江西 萍乡 337000)
Author(s):
DONG Zhaoli1 LU Wanchun2*
(1.Nanchang Business College,Jiangxi Agricultural University, Ganjiang New District Jiangxi 332020, China; 2.Department of Mathematics, Pingxiang University, Pingxiang Jiangxi 337000, China)
关键词:
Markov机制切换 随机SIRS模型 疫苗接种 垂直感染 动力性质
Keywords:
Markovian switching stochastic SIRS model vaccination vertical transmission dynamic properties
分类号:
O 211.6; O 29
DOI:
10.16357/j.cnki.issn1000-5862.2023.04.02
文献标志码:
A
摘要:
该文研究了一类含Markov机制切换和疫苗接种及垂直感染的随机SIRS模型的动力学性质,通过构造带切换的Lyapunov函数,研究了模型具有平稳分布的判别条件,并研究了在模型中疾病趋于灭绝的阈值.最后通过举例来验证研究结果.结果表明:模型具有平稳分布和趋于灭绝的阈值是相同的.
Abstract:
The dynamic properties of a class of stochastic SIRS model with vaccination and vertical transmission under Markovian switching are studied.By constructing the Lyapunov function with switching, the discriminant conditions of the model with stationary distribution are studied, and the threshold of disease tending to extinction in the model is studied.Finally, example is presented to verify the theoretical results.The conclusions show that the threshold of the model for stationary distribution and extinction is consistent.

参考文献/References:

[1] LAHROUZ A,OMARI L,KIOUACH D,et al.Complete global stability for an SIRS epidemic model with generalized non-linear incidence and vaccination [J].Applied Mathema-tics and Computation,2012,218(11):6519-6525.
[2] ZHAO Yanan,JIANG Daqing.The threshold of a stochastic SIS epidemic model with vaccination [J].Applied Mathema-tics and Computation,2014,243:718-727.
[3] JIN Manli.Classification of asymptotic behavior in a stochastic SIS epidemic model with vaccination [J].Physica A:Statistical Mechanics and Its Applications,2019,521:661-666.
[4] KIOUACH D, SABBAR Y.Stability and threshold of a stochastic SIRS epidemic model with vertical transmission and transfer from infectious to susceptible individuals [J].Discrete Dynamics in Nature and Society,2018,2018(1):7570296.
[5] ZHANG Xiaobing,CHANG Suqin,SHI Qihong,et al.Qualitative study of a stochastic SIS epidemic model with vertical transmission [J].Physica A:Statistical Mechanics and Its Applications,2018,505:805-817.
[6] CHEN Yang,ZHAO Wencai.Asymptotic behavior and threshold of a stochastic SIQS epidemic model with vertical transmission and Beddington-DeAngelis incidence [J].Advances in Difference Equations,2020,2020(1):353.
[7] SIMON M.SIR epidemics with stochastic infectious periods [J].Stochastic Processes and Their Applications,2020,130(7):4252-4274.
[8] CAI Siyang,CAI Yongmei,MAO Xuerong.A stochastic differential equation SIS epidemic model with regime switching [J].Discrete and Continuous Dynamical Systems:Series B,2021,26(9):4887-4905.
[9] LI Dan, LIU Shengqiang,CUI Jingan.Threshold dynamics and ergodicity of an SIRS epidemic model with Markovian switching [J].Journal of Differential Equations,2017,263(12):8873-8915.
[10] GUO Xiaoxia, LUO Jiaowan.Stationary distribution and extinction of SIR model with nonlinear incident rate under Markovian switching [J].Physica A:Statistical Mechanics and Its Applications,2018,505:471-481.
[11] ZHANG Xinhong,JIANG Daqing,ALSAEDI A,et al.Stationary distribution of stochastic SIS epidemic model with vaccination under regime switching [J].Applied Mathematics Letters,2016,59:87-93.
[12] DIEU N T,NGUYEN D H,DU N H, et al.Classification of asymptotic behavior in a stochastic SIR model [J].SIAM Journal on Applied Dynamical Systems,2016,15(2):1062-1084.
[13] NGUYEN D H,YIN G,ZHU Chao.Long-term analysis of a stochastic SIRS model with general incidence rates [J].SIAM Journal on Applied Mathematics,2020,80(2):814-838.
[14] DU N H,NHU N N.Permanence and extinction for the stochastic SIR epidemic model [J].Journal of Differential Equations,2020,269(11):9619-9652.
[15] MAO Xuerong,YUAN Chenggui.Stochastic differential equations with Markovian switching [M].London:Imperial College Press,2006.

备注/Memo

备注/Memo:
收稿日期:2023-06-05
基金项目:国家自然科学基金(62063029)和江西省教育厅科学技术研究课题(GJJ209103)资助项目.
作者简介:董朝丽(1985—),女,山西晋城人,讲师,主要从事随机微分方程研究.E-mail:dongzhao-li@qq.com
通信作者:陆万春(1978—),男,江西信丰人,副教授,主要从事复分析、随机微分方程等的研究.E-mail:luwanchun540@163.com
更新日期/Last Update: 2023-07-25