[1]宋丽红,袁思玉,汪文义*.面向学习测评的纵向认知诊断模型的泛化性能比较研究[J].江西师范大学学报(自然科学版),2023,(04):384-392.[doi:10.16357/j.cnki.issn1000-5862.2023.04.08]
 SONG Lihong,YUAN Siyu,WANG Wenyi*.The Comparative Study on the Generalization Performance of Longitudinal Cognitive Diagnostic Models for Learning Assessment[J].Journal of Jiangxi Normal University:Natural Science Edition,2023,(04):384-392.[doi:10.16357/j.cnki.issn1000-5862.2023.04.08]
点击复制

面向学习测评的纵向认知诊断模型的泛化性能比较研究()
分享到:

《江西师范大学学报》(自然科学版)[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2023年04期
页码:
384-392
栏目:
心理与教育测量
出版日期:
2023-07-25

文章信息/Info

Title:
The Comparative Study on the Generalization Performance of Longitudinal Cognitive Diagnostic Models for Learning Assessment
文章编号:
1000-5862(2023)04-0384-09
作者:
宋丽红1袁思玉2汪文义2*
(1.江西师范大学教育学院,江西 南昌 330022; 2.江西师范大学计算机信息工程学院,江西 南昌 330022)
Author(s):
SONG Lihong1YUAN Siyu2 WANG Wenyi2*
(1.School of Education, Jiangxi Normal University, Nanchang Jiangxi 330022, China; 2. School of Computer and Information Engineering, Jiangxi Normal University, Nanchang Jiangxi 330022,China)
关键词:
纵向认知诊断模型 属性转换 模式转换 高阶模型 泛化性能
Keywords:
longitudinal cognitive diagnostic model attribute transition pattern transition higher-order model generalization performance
分类号:
B 841
DOI:
10.16357/j.cnki.issn1000-5862.2023.04.08
文献标志码:
A
摘要:
为了研究纵向认知诊断模型适应新数据的能力,该文主要考查3种纵向认知诊断模型在不同类型纵向数据上的泛化性能.这3种纵向认知诊断模型分别为模式级别上的潜在转换分析模型Patt-DINA、属性级别上的潜在转换分析模型Att-DINA和基于高阶潜在结构的sLong-DINA模型.借助被试知识状态的属性判准率、模式判准率、绝对拟合指标和相对拟合指标等4个指标,评价这3种模型的表现.研究结果表明: Att-DINA模型和sLong-DINA模型在大多数条件下更具优势,即泛化性能相对较好,Patt-DINA模型因待估计参数较多而优势较小,但Patt-DINA模型在样本量较大时仍具有优势并且它能估计的知识状态类间转移概率有更大的变化空间.
Abstract:
To investigate the ability of longitudinal cognitive diagnostic models to adapt to fresh data, the generalization performance of three longitudinal cognitive diagnostic models on different types of longitudinal data is investigated. The first longitudinal cognitive diagnostic model is Patt-DINA, a model of latent transition analysis at the attribute pattern level. The second is the Att-DINA, a model of latent transition analysis at the attribute level. And the sLong-DINA model is based on higher-order latent structures. The performance of these three models is evaluated with the correct classification rates of attribute and pattern of students' knowledge states, the absolute model fit index and the relative model fit index. The results of the simulation study show that the Att-DINA model and the sLong-DINA model are more advantageous in most conditions, which means that their generalization performance is relatively better. The Patt-DINA model is less advantageous due to the larger number of parameters to be estimated, but the model still has advantages when the sample size is large and it can estimate transition probabilities of knowledge states with more space for variation.

参考文献/References:

[1] WILIAM D. What is assessment for learning? [J]. Studies in Educational Evaluation, 2011,37(1):3-14.
[2] DE LA TORRE J. The generalized DINA model framework [J]. Psychometrika, 2011,76(2):179-199.
[3] TEMPLIN J L, HENSON R A. Measurement of psychological disorders using cognitive diagnosis models [J]. Psychological Methods,2006,11(3):287-305.
[4] 詹沛达,潘艳方,李菲茗.面向“为学习而测评”的纵向认知诊断模型 [J]. 心理科学,2021,44(1):214-222.
[5] COLLINS L M, WUGALTER S E. Latent class models for stage-sequential dynamic latent variables [J]. Multivariate Behavioral Research, 1992, 27(1):131-157.
[6] LI Feiming, COHEN A, BOTTGE B, et al. A latent transition analysis model for assessing change in cognitive skills [J]. Educational & Psychological Measurement,2016, 76(2):181-204.
[7] KAYA Y, LEITE W L. Assessing change in latent skills across time with longitudinal cognitive diagnosis modeling: An evaluation of model performance [J]. Educational and Psychological Measurement,2017,77(3):369-388.
[8] CHEN Yinghan, CULPEPPER S A, WANG Shiyu, et al. A hidden Markov model for learning trajectories in cognitive diagnosis with application to spatial rotation skills [J]. Applied Psychological Measurement,2017,42(1): 5-23.
[9] WANG Shiyu, YANG Yan, CULPEPPER S A, et al. Tracking skill acquisition with cognitive diagnosis models: a higher-order, hidden Markov model with covariates [J]. Journal of Educational and Behavioral Statistics,2018,43(1):57-87.
[10] WANG Shiyu, ZHANG Susu, DOUGLAS J, et al. Using response times to assess learning progress: a joint model for responses and response times [J]. Measurement: Interdisciplinary Research and Perspectives,2018,16(1):45-58.
[11] LEE S Y. Growth curve cognitive diagnosis models for longitudinal assessment [D]. California: University of California,2017.
[12] HUANG Hungyu. Multilevel cognitive diagnosis models for assessing changes in latent attributes [J]. Journal of Educational Measurement,2017,54(4):440-480.
[13] ZHAN Peida, JIAO Hong, LIAO Dandan, et al. A longitudinal higher-order diagnostic classification model [J]. Journal of Educational and Behavioral Statistics, 2019,44(3):251-281.
[14] COLLINS L M, LANZA S T. Latent class and latent transition analysis: with applications in the social, behavioral, and health sciences [M]. Hoboken, NJ: John Wiley,2010.
[15] PHILIPP M, STROBL C, DE LA TORRE J, et al. On the estimation of standard errors in cognitive diagnosis models [J]. Journal of Educational and Behavioral Statistics,2018,43(1):88-115.
[16] ZHAN Peida, JIAO Hong, MAN Kaiwen, et al. Using JAGS for Bayesian cognitive diagnosis modeling: a tutorial [J]. Journal of Educational and Behavioral Statistics, 2019,44(4):473-503.
[17] GELMAN A, CARLIN J B, STERN H S, et al. Bayesian data analysis [M]. 3rd ed. London: Chapman and Hall/CRC,2003.
[18] AKAIKE H. A new look at the statistical model identification [J]. IEEE Transactions on Automatic Control,1974,19(6):716-723.
[19] SCHWARZ G. Estimating the dimension of a model [J]. Annals of Statistics, 1978,6(2):461-464.
[20] SPIEGELHALTER D J, BEST N G, CARLIN B P. Bayesian measures of model complexity and fit [J]. Journal of the Royal Statistical Society: Series B(Statistical Methodology),2002,64(4):583-639.

备注/Memo

备注/Memo:
收稿日期:2022-12-11
基金项目:国家自然科学基金(62267004,62067005,61967009)和江西省高等学校教学改革研究课题(JXJG-22-2-44)资助项目.
通信作者:汪文义(1983—),男,湖南衡山人,教授,博士,主要从事教育测量与信息处理的研究E-mail:wenyiwang@jxnu.edu.cn
更新日期/Last Update: 2023-07-25