[1]商晓菲,曹如凤,薛 俊,等.磁调控对硅烯器件光电输运性质的影响[J].江西师范大学学报(自然科学版),2023,(05):477-482.[doi:10.16357/j.cnki.issn1000-5862.2023.05.06]
 SHANG Xiaofei,CAO Rufeng,XUE Jun,et al.The Effect of Magnetic Modulation on the Transport Properties of Silicene Devices[J].Journal of Jiangxi Normal University:Natural Science Edition,2023,(05):477-482.[doi:10.16357/j.cnki.issn1000-5862.2023.05.06]
点击复制

磁调控对硅烯器件光电输运性质的影响()
分享到:

《江西师范大学学报》(自然科学版)[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2023年05期
页码:
477-482
栏目:
化学
出版日期:
2023-09-25

文章信息/Info

Title:
The Effect of Magnetic Modulation on the Transport Properties of Silicene Devices
文章编号:
1000-5862(2023)05-0477-06
作者:
商晓菲曹如凤薛 俊李月君周艳红*
(华东交通大学理学院,江西 南昌 330013)
Author(s):
SHANG Xiaofei CAO Rufeng XUE Jun LI Yuejun ZHOU Yanhong*
(College of Science, East China Jiaotong University, Nanchang Jiangxi 330013,China)
关键词:
光学伽伐尼效应 空间反演对称性 轨道对称性 自旋密度
Keywords:
photogalvani effect spatial inversion symmetry orbital symmetry spin density
分类号:
O 471
DOI:
10.16357/j.cnki.issn1000-5862.2023.05.06
文献标志码:
A
摘要:
基于第一性原理方法,该文研究了硅烯器件对外部磁场的响应及其光电输运性质.根据左右电极自旋磁构型特点,构建了2种硅器件结构:左右电极磁矩方向平行的P构型和磁矩方向反平行的AP构型.研究发现:通过调节磁场,器件电子透射率可以在导电态和绝缘态之间切换.此外,这2种器件在光学伽伐尼效应下获得了不同的光电流.在AP构型中,纯自旋流既不依赖于光子的能量,也不受入射光偏振角影响,而P构型则不是.通过调整轨道对称性实现电导切换以及通过磁场调制产生纯自旋流的方法可以用于硅烯电子器件的设计.
Abstract:
Based on a first principles approach, we have investigated the response of silicane devices to external magnetic fields and their optoelectronic transport properties. Two silicon device structures have been constructed based on the spin-magnetic configuration of the left and right leads: a P configuration with parallel magnetic moments and an AP configuration with anti-parallel magnetic moments.It is found that by adjusting the magnetic field, the device's electron transmission could be switched between the conducting and insulating states.In addition to this, the two devices obtain different photocurrents under the photogalvani effect.Interestingly, the pure spin current in the AP configuration is neither dependent on the energy of the photon nor is it affected by the angle of polarization of the incident light, whereas the P configuration is not. Mechanisms to achieve conductance switching by adjusting orbital symmetry and methods to generate pure spin currents through magnetic field modulation could be considered in the design of future electronic devices from silicane.

参考文献/References:

[1] NOVOSELOV K S,GEIM A K, MOROZOV S V,et al. Two-dimensional gas of massless Dirac fermions in graphene [J].Nature,2005,438(7065):197-200.
[2] BERGER C,WU Xiaosong,FIRST P N,et al.Dirac particles in epitaxial graphene films grown on SiC [J]. Advances in Solid State Physics,2008,47:145-157.
[3] NOVOSELOV K S,GEIM A K, MOROZOV S V,et al. Electric field effect in atomically thin carbon films [J]. Science,2004,306(5696):666-669
[4] ZHANG Yuanbo,TAN Yanwen,STORMER H L,et al.Experimental observation of the quantum Hall effect and Berry's phase in graphene[J].Nature,2005,438(7065):201-204.
[5] DRUMMOND N D,ZOLYOMI V,FAL'KO V I.Electrically tunable band gap in silicene [J]. Physical Review B,2012,85(7):75423.
[6] ZHANG Changwen,YAN Shishen.First-principles study of ferromagnetism in two-dimensional silicene with hydrogenation[J].The Journal of Physical Chemistry C,2012,116(6):4163-4166.
[7] DING Yi,NI Jun.Electronic structures of silicon nanoribbons[J].Applied Physics Letters,2009,95(8):83115.
[8] KANG Jun,WU Fengmin,LI Jingbo.Symmetry-dependent transport properties and magnetoresistance in zigzag silicene nanoribbons [J].Applied Physics Letters,2012,100(23):233122.
[9] XU Chengyong,LUO Guangfu, LIU Qihang, et al. Giant magnetoresistance in silicene nanoribbons [J].Nanoscale,2012,4(10):3111-3117.
[10] LALMI B,OUGHADDOU H,ENRIQUEZ H,et al.Epitaxial growth of a silicene sheet [J].Applied Physics Letters,2010,97(22):223109.
[11] CAHANGIROV S,TOPSAKAL M, AKTÜRK E,et al.Two-and one-dimensional honeycomb structures of silicon and germanium [J].Physical review letters,2009,102(23):236804.
[12] LI Zuanyi,QIAN Haiyun,WU Jian,et al. Role of symmetry in the transport properties of graphene nanoribbons under bias [J].Physical review letters,2008,100(20):206802.
[13] KIM W Y, KIM K S. Prediction of very large values of magnetoresistance in a graphene nanoribbon device [J]. Nature nanotechnology,2008,3(7):408-412.
[14] IVCHENKO E L, PIKUS G E.New photogalvanic effect in gyrotropic crystals [J].ZhETF Pisma Redaktsiiu,1978,27:640.
[15] BELINICHER V I.Space-oscillating photocurrent in crystals without symmetry center [J].Physics Letters A,1978, 66(3):213-214.
[16] ASNIN V M, BAKUN A A,DANISHEVSKII A M, et al. Observation of a photo-emf that depends on the sign of the circular polarization of the light [J].ZhETF Pisma Redaktsiiu,1978,28: 80-84.
[17] GANICHEV S D, PRETTL W.Spin photocurrents in quantum wells [J].Journal of physics:Condensed matter,2003,15(20):R935.
[18] WANG Dakun, SUN Qingfeng,GUO Hong. Spin-battery and spin-current transport through a quantum dot [J]. Physical Review B,2004,69(20):205312.
[19] TAO Xixi, ZHANG Lei,ZHENG Xiaohong,et al. h-BN/graphene van der Waals vertical heterostructure: a fully spin-polarized photocurrent generator [J].Nanoscale,2018,10(1):174-183.
[20] MUNOZ-ROJAS F,FERNÁNDEZ-ROSSIER J,PALACIOS J J. Giant magnetoresistance in ultrasmall graphene based devices[J].Physical Review Letters,2009,102(13):136810.
[21] SON Y W,COHEN M L,LOUIE S G. Half-metallic graphene nanoribbons [J].Nature,2006,444(7117):347-349.
[22] ZHANG Lei,GONG Kui,CHEN Jingzhe,et al. Generation and transport of valley-polarized current in transition-metal dichalcogenides [J].Physical Review B,2014,90(19):195428.
[23] HENRICKSON L E. Nonequilibrium photocurrent modeling in resonant tunneling photodetectors[J].Journal of Applied Physics,2002,91(10):6273-6281.
[24] MAASSEN J,HARB M,MICHAUD-RIOUX V,et al.Quantum transport modeling from first principles [J].Proceedings of the IEEE,2012,101(2):518-530.
[25] PERDEW J P,BURKE K,ERNZERHOF M.Generalized gradient approximation made simple [J].Physical Review Letters,1996,77(18):3865.
[26] GANICHEV S D,RÖSSLER U,PRETTL W,et al.Removal of spin degeneracy in p-SiGe quantum wells demonstrated by spin photocurrents [J].Physical Review B,2002,66(7):75328.
[27] JIANG Peng,TAO Xixi,HAO Hua, et al.Two-dimensional centrosymmetrical antiferromagnets for spin photogalvanic devices [J].NPJ Quantum Information,2021,7(1):21.
[28] LI Yuejun, SHANG Xiaofei, ZHOU Yanhong, et al. Realizing pure spin current by the photogalvanic effect in armchair graphene nanoribbons with nano-constriction engineering [J]. Physical Chemistry Chemical Physics,2023,25(4):2890-2896.
[29] CHEN Yenchia,CAO Ting,CHEN Chen, et al. Molecular bandgap engineering of bottom-up synthesized graphene nanoribbon heterojunctions [J].Nature Nanotechnology,2015,10(2):156-160.
[30] MA Ruguang, LIN Gaoxin, ZHOU Yao, et al. A review of oxygen reduction mechanisms for metal-free carbon-based electrocatalysts [J].NPJ Computational Materials,2019,5(1):78.

备注/Memo

备注/Memo:
收稿日期:2023-03-01
基金项目:国家自然科学基金(12264014),江西省自然科学基金(2022ACBL212005),江西省研究生创新专项基金(YC2021-S425、YC2022-S491)和国家级大学生创新训练计划(202210404010)资助项目.
通信作者:周艳红(1980—),女,江西宜春人,副教授,博士,主要从事低维材料的输运性质研究.E-mail:yhzhou80@163.com
更新日期/Last Update: 2023-09-25