参考文献/References:
[1] XU Mengfan,LI Xinghua,LIU Hai,et al.An intrusion detection scheme based on semi-supervised learning and information gain ratio [J].Journal of computer research and development,2017,54(10):2255-2267.
[2] CHAPELLE O,SCHOLKOPF B,ZIEN A.Semi-supervised learning [M].Cambridge:MIT Press,2006.
[3] 周志华.基于分歧的半监督学习[J].自动化学报,2013,39(11):1871-1878.
[4] FISHER R A.The use of multiple measurements in taxonomic problems [J].Annals of Eugenics,1936,7(2):179-188.
[5] BAUDAT G,ANOUAR F.Generalized discriminant analysis using a kernel approach [J].Neural Compu-tation,2000,12(10):2385-2404.
[6] RABINER L R.A tutorial on hidden Markov models and selected applications in speech recognition [J].Procee-dings of the IEEE,1989,77(2):257-286.
[7] SHAHSHAHANI B M,LANDGREBE D A.The effect of unlabeled samples in reducing the small sample size problem and mitigating the Hughes phenomenon [J].IEEE Transactions on Geoscience and Remote Sensing,1994,32(5):1087-1095.
[8] WANG Fei,ZHANG Changshui.Label propagation through linear neighborhoods [J].IEEE Transactions on Know-ledge and Data Engineering,2008,20(1):55-67.
[9] BREVE F,ZHAO Liang,QUILES M,et al.Particle competition and cooperation in networks for semi-supervised learning[J].IEEE Transactions on Knowledge and Data Engineering,2011,24(9):1686-1698.
[10] BLUM A,MITCHELL T.Combining labeled and unlabeled data with co-training [EB/OL].[2022-02-06].https://is.muni.cz/el/1433/jaro2010/PV056/um/12319818/Blum-Mitchell-Cotraining.pdf.
[11] GOLDMAN S,ZHOU Yan.Enhancing supervised learning with unlabeled data [EB/OL].[2022-03-16]. http://citeseerx.ist.psu.edu/viewdoc/download; jsessionid=1B220CE1696AD240EF611FDAF54AC93F?doi=10.1.1.33.2574&rep=rep1&type=pdf.
[12] ZHOU Zhihua,LI Ming.Tri-training:exploiting unlabeled data using three classifiers [J].IEEE Transactions on knowledge and Data Engineering,2005,17(11):1529-1541.
[13] 张永,陈蓉蓉,张晶.基于交叉熵的安全Tri-training算法 [J].计算机研究与发展,2021,58(1):60-69
[14] 莫建文,贾鹏.基于梯形网络和改进三训练法的半监督分类[EB/OL].[2022-03-19].https://doi.org/10.16383/j.aas.c190869.
[15] 邓超,郭茂祖.基于Tri-Training和数据剪辑的半监督聚类算法[J].软件学报,2008,19(3):663-673.
[16] 杨艺,蒋良孝,李超群,等.一种基于Tri-training的众包标记噪声纠正算法 [J].电子学报,2021,49(3):424-434.
[17] 邓超,郭茂祖.基于自适应数据剪辑策略的Tri-training算法 [J].计算机学报,2007,30(8):1213-1226.
[18]ANGLUIN D,LAIRD P.Learning from noisy examples [J].Machine Learning,1988,2(4):343-370.
[19] 李敦明.基于半监督学习策略的网络异常检测方法研究 [D].上海:华东师范大学,2019.
[20] BACHE K,Lichman M.UCI machine learning repository [EB/OL].[2022-6-30].https://www.researchgate.net/publication/272825857_UCI_Machine_Learning_Repository.
相似文献/References:
[1]王艳华,杨志豪,李彦鹏,等.基于监督学习和半监督学习的蛋白质关系抽取[J].江西师范大学学报(自然科学版),2013,(04):392.
WANG Yan-hua,YANG Zhi-hao,LI Yan-peng,et al.Protein-Protein Interaction Extraction Based on the Combination of Supervised and Semi-Supervised Learning Method[J].Journal of Jiangxi Normal University:Natural Science Edition,2013,(05):392.