参考文献/References:
[1] 冯康,秦孟兆.哈密尔顿系统的辛几何算法 [M].杭州:浙江科学技术出版社,2002.
[2] 常谦顺.一类非线性Schrödinger方程的守恒差分格式 [J].科学通报,1981,26(18):1094-1097.
[3] Kong Linghua,Hong Jialin,Wang Lan,et al.Symplectic integrator for nonlinear high order Schrödinger equation with a trapped term [J].J Comput Appl Math,2009,231(2):664- 679.
[4] Hong Jialin,Liu Ying,Munthe-Kaas Hans,et al.Globally conservative properties and error estimation of a multisymplectic scheme for Schrödinger equations with variable coefficients [J].Appl Numer Math,2006,56(6):814-843.
[5] Zeng Wenping.Leap-frog schemes of Hamiltonian system for Schrödinger equations of high order [J].Numer Math:J of Chin Univer,1995,17(4):305-317.
[6] Chao Hongyang.A difference scheme for a class of nonlinear Schrödinger equations [J].J Comput Math,1987,5(3):272-280.
[7] Lele S K.Compact finite difference schemes with spectral-like solution [J].J Comput Phys,1992,103(1):16-42.
[8] Kong Linghua,Duan Yali,Wang Lan,et al.Spectral-like resolution compact ADI finite difference method for the multi-dimensional Schrödinger equations [J].Math Comput Model,2012,55(5/6):1798-1812.
[9] Li Jichun,Chen Yitung,Liu Guoqing.High-order compact ADI methods for the parabolic equations [J].Comput Math Appl,2006,52(8/9):1343-1356.
[10] 马院萍,孔令华,王兰.2 维Schrödinger方程的高阶紧致ADI格式 [J].江西师范大学学报:自然科学版,2010,34(4):421-425.
[11] 史荣昌.矩阵分析 [M].北京:北京理工大学出版社,2004.
相似文献/References:
[1]童慧,孔令华,王兰.Dirac方程的紧致分裂多辛格式[J].江西师范大学学报(自然科学版),2014,(05):521.
TONG Hui,KONG Ling-hua,WANG Lan.Compact Splitting Multisymplectic Scheme for Dirac Equation[J].Journal of Jiangxi Normal University:Natural Science Edition,2014,(06):521.