[1]周晶晶,孔令华,黄红,等.具有坍塌势的4阶薛定谔方程的紧致守恒格式[J].江西师范大学学报(自然科学版),2013,(06):633-636.
 ZHOU Jing-jing,KONG Ling-hua,HUANG Hong,et al.Compact and Conserving Scheme of Fourth-Order Schr(o)dinger Equation with Collapse Potential Term[J].Journal of Jiangxi Normal University:Natural Science Edition,2013,(06):633-636.
点击复制

具有坍塌势的4阶薛定谔方程的紧致守恒格式()
分享到:

《江西师范大学学报》(自然科学版)[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2013年06期
页码:
633-636
栏目:
出版日期:
2013-12-31

文章信息/Info

Title:
Compact and Conserving Scheme of Fourth-Order Schr(o)dinger Equation with Collapse Potential Term
作者:
周晶晶;孔令华;黄红;黄晓梅
江西师范大学数学与信息科学学院,江西南昌,330022
Author(s):
ZHOU Jing-jing;KONG Ling-hua;HUANG Hong;HUANG Xiao-mei
关键词:
薛定谔方程高阶紧致格式守恒律
Keywords:
fourth-order Schr(o)dinger equationhigh order compact schemeconservation law
分类号:
O241.8
文献标志码:
A
摘要:
利用紧致方法离散4阶薛定谔方程的空间导数,构造出具有坍塌势的4阶薛定谔方程的紧致守恒格式.理论分析表明该格式具有精度高、模版小的特点,且保持离散的电荷守恒律以及能量守恒律.最后通过数值实验验证理论分析的正确性.
Abstract:
The compact and conserving scheme is presented to solve fourth-order Schrödinger equation with collapse term by discretizing spatial direction with compact method.The scheme is not only with high accuracy,but also unconditionally stable.Moreover,it is proved that the scheme preserves discrete charge conservation law and energy conservation law.Detailed numerical results suggest that the scheme is efficient and consistent with our theoretical analysis.

参考文献/References:

[1] 冯康,秦孟兆.哈密尔顿系统的辛几何算法 [M].杭州:浙江科学技术出版社,2002.
[2] 常谦顺.一类非线性Schrödinger方程的守恒差分格式 [J].科学通报,1981,26(18):1094-1097.
[3] Kong Linghua,Hong Jialin,Wang Lan,et al.Symplectic integrator for nonlinear high order Schrödinger equation with a trapped term [J].J Comput Appl Math,2009,231(2):664- 679.
[4] Hong Jialin,Liu Ying,Munthe-Kaas Hans,et al.Globally conservative properties and error estimation of a multisymplectic scheme for Schrödinger equations with variable coefficients [J].Appl Numer Math,2006,56(6):814-843.
[5] Zeng Wenping.Leap-frog schemes of Hamiltonian system for Schrödinger equations of high order [J].Numer Math:J of Chin Univer,1995,17(4):305-317.
[6] Chao Hongyang.A difference scheme for a class of nonlinear Schrödinger equations [J].J Comput Math,1987,5(3):272-280.
[7] Lele S K.Compact finite difference schemes with spectral-like solution [J].J Comput Phys,1992,103(1):16-42.
[8] Kong Linghua,Duan Yali,Wang Lan,et al.Spectral-like resolution compact ADI finite difference method for the multi-dimensional Schrödinger equations [J].Math Comput Model,2012,55(5/6):1798-1812.
[9] Li Jichun,Chen Yitung,Liu Guoqing.High-order compact ADI methods for the parabolic equations [J].Comput Math Appl,2006,52(8/9):1343-1356.
[10] 马院萍,孔令华,王兰.2 维Schrödinger方程的高阶紧致ADI格式 [J].江西师范大学学报:自然科学版,2010,34(4):421-425.
[11] 史荣昌.矩阵分析 [M].北京:北京理工大学出版社,2004.

相似文献/References:

[1]童慧,孔令华,王兰.Dirac方程的紧致分裂多辛格式[J].江西师范大学学报(自然科学版),2014,(05):521.
 TONG Hui,KONG Ling-hua,WANG Lan.Compact Splitting Multisymplectic Scheme for Dirac Equation[J].Journal of Jiangxi Normal University:Natural Science Edition,2014,(06):521.

备注/Memo

备注/Memo:
国家自然科学基金(11301234,11271171);江西省自然科学基金(20114BAB201011);2010年江西师范大学青年成长基金
更新日期/Last Update: 1900-01-01