[1]张倩,韩惠丽,张盼盼.基于有理Haar小波求解分数阶第2类Fredholm积分方程[J].江西师范大学学报(自然科学版),2014,(01):47-50.
 ZHANG Qian,HAN Hui-li,ZHANG Pan-pan.Numerical Solution of Fractional Fredhlom Integral Equation of the Second Kind Based on the Rationalized Haar Wavelet[J].Journal of Jiangxi Normal University:Natural Science Edition,2014,(01):47-50.
点击复制

基于有理Haar小波求解分数阶第2类Fredholm积分方程()
分享到:

《江西师范大学学报》(自然科学版)[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2014年01期
页码:
47-50
栏目:
出版日期:
2014-02-28

文章信息/Info

Title:
Numerical Solution of Fractional Fredhlom Integral Equation of the Second Kind Based on the Rationalized Haar Wavelet
作者:
张倩;韩惠丽;张盼盼
宁夏大学数学计算机学院,宁夏银川,750021
Author(s):
ZHANG Qian;HAN Hui-li;ZHANG Pan-pan
关键词:
有理Haar小波分数阶第2类Fredholm积分方程配置法
Keywords:
rationalized Haar waveletfractional orderFredhlom integral equation of the second kindcollocation method
分类号:
O175.5
文献标志码:
A
摘要:
利用有理Haar小波函数数值求解分数阶第2类Fredholm积分方程,用有理Haar小波定义及性质与配置法给出有理Haar小波积分算子矩阵,将积分方程转化为代数方程组进行求解.最后通过误差分析和数值算例将分数阶积分方程的精确解和用Haar小波所得数值解进行比较,表明了该算法具有较高的精确度.
Abstract:
The rationalized Haar functions are used to solve the solution of fractional order Fredholm integral equation of the second kind.The integral equation can be reduced to a system of algebraic equations by using rationalized Haar wavelet and collection method.Finally,the numerical solution of fractional integral equation with exact solution and the numerical solutions using Haar wavelet are compared.The result shows that the algorithm has high accuracy.

参考文献/References:

[1] Lepik U.Solving fractional integral equations by the Haar wavelet method [J].Appl Math Compute,2009,214:468-478.
[2] Habibollah Saeedi,Nasibeh Mollahasani.An operation Haar wavelet method for solving fractional Volterraequations [J].Int J Appl Math Compute Sic,2011,21(3):535-547.
[3] Li Yuanlu,Zhao Weiwei.Haar wavelet operational matrix of fractional order integration and its applications in solving the fractional order differential equations [J].Appl Math Comput,2010,216:2276-2285.
[4] Li Y.Solving a nonlinear fractional differential equation using Chebyshev wavelets [J].Commun Nonlinear Sci Numer Simul,2010,15:2284-2292..
[5] Saeedi H.A CAS wavelet method for solving nonlinear Fredholm integro-differential equation of fractional order [J].Commun Nonlinear Sci Numer Simulat,2011,16:1154-1163.
[6] Zhu Li,Fan Qibin.Solving fractional nonlinear Fredholm Integra-differential equations by the second kind Chebyshev wavelet [J].Commun Nonlinear Sci Numer Simulat,2012,17:2333-2341.
[7] Maleknejad K,Mirzaee F.Using rationalized Haar wavelet for solving linear integral equations [J].Applied Mathematics and Computation,2005,160:579-587.
[8] Maleknejad K,Mirzaee F,Abbasbandy S.Solving linear integro-differential equations system by using Rationalized Haar functions method [J].Appl Math Comput,2004,155:317-328.
[9] Reihanimh Abadiz.Rationalized Haar function method for solving Fredholm and Volterra integral equations [J].Journal of Computational and Applied Mathematics,2007,20:12-20.
[10] Ohkita M,Kobayashi Y.An application of rationalized Haar functions to solution of linear differential equations [J].IEEE Trans Circuit Syst,1986,9:853-862.

相似文献/References:

[1]何 仙,张清业*.一类分数阶边值问题无穷多解的存在性[J].江西师范大学学报(自然科学版),2020,(05):515.[doi:10.16357/j.cnki.issn1000-5862.2020.05.12]
 HE Xian,ZHANG Qingye*.The Existence of Infinitely Many Solutions for a Class of Fractional Boundary Value Problems[J].Journal of Jiangxi Normal University:Natural Science Edition,2020,(01):515.[doi:10.16357/j.cnki.issn1000-5862.2020.05.12]

备注/Memo

备注/Memo:
国家自然科学基金(11261041)
更新日期/Last Update: 1900-01-01