参考文献/References:
[1] Lepik U.Solving fractional integral equations by the Haar wavelet method [J].Appl Math Compute,2009,214:468-478.
[2] Habibollah Saeedi,Nasibeh Mollahasani.An operation Haar wavelet method for solving fractional Volterraequations [J].Int J Appl Math Compute Sic,2011,21(3):535-547.
[3] Li Yuanlu,Zhao Weiwei.Haar wavelet operational matrix of fractional order integration and its applications in solving the fractional order differential equations [J].Appl Math Comput,2010,216:2276-2285.
[4] Li Y.Solving a nonlinear fractional differential equation using Chebyshev wavelets [J].Commun Nonlinear Sci Numer Simul,2010,15:2284-2292..
[5] Saeedi H.A CAS wavelet method for solving nonlinear Fredholm integro-differential equation of fractional order [J].Commun Nonlinear Sci Numer Simulat,2011,16:1154-1163.
[6] Zhu Li,Fan Qibin.Solving fractional nonlinear Fredholm Integra-differential equations by the second kind Chebyshev wavelet [J].Commun Nonlinear Sci Numer Simulat,2012,17:2333-2341.
[7] Maleknejad K,Mirzaee F.Using rationalized Haar wavelet for solving linear integral equations [J].Applied Mathematics and Computation,2005,160:579-587.
[8] Maleknejad K,Mirzaee F,Abbasbandy S.Solving linear integro-differential equations system by using Rationalized Haar functions method [J].Appl Math Comput,2004,155:317-328.
[9] Reihanimh Abadiz.Rationalized Haar function method for solving Fredholm and Volterra integral equations [J].Journal of Computational and Applied Mathematics,2007,20:12-20.
[10] Ohkita M,Kobayashi Y.An application of rationalized Haar functions to solution of linear differential equations [J].IEEE Trans Circuit Syst,1986,9:853-862.
相似文献/References:
[1]何 仙,张清业*.一类分数阶边值问题无穷多解的存在性[J].江西师范大学学报(自然科学版),2020,(05):515.[doi:10.16357/j.cnki.issn1000-5862.2020.05.12]
HE Xian,ZHANG Qingye*.The Existence of Infinitely Many Solutions for a Class of Fractional Boundary Value Problems[J].Journal of Jiangxi Normal University:Natural Science Edition,2020,(01):515.[doi:10.16357/j.cnki.issn1000-5862.2020.05.12]