[1]汝 敏.Nevanlinna理论的最新进展(英文)[J].江西师范大学学报(自然科学版),2018,(01):1-11.[doi:10.16357/j.cnki.issn1000-5862.2018.01.01]
 RU Min.The Recent Progress in Nevanlinna Theory[J].Journal of Jiangxi Normal University:Natural Science Edition,2018,(01):1-11.[doi:10.16357/j.cnki.issn1000-5862.2018.01.01]
点击复制

Nevanlinna理论的最新进展(英文)()
分享到:

《江西师范大学学报》(自然科学版)[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2018年01期
页码:
1-11
栏目:
复分析研究
出版日期:
2018-02-20

文章信息/Info

Title:
The Recent Progress in Nevanlinna Theory
文章编号:
1000-5862(2018)01-0001-011
作者:
汝 敏
休斯顿大学数学系,美国德州 休斯顿 77204
Author(s):
RU Min
Department of Mathematics,University of Houston,Houston TX 77204,USA
关键词:
Nevanlinna理论 第一基本定理 第二基本定理
Keywords:
Nevanlinna theory the First Main Theorem(FMT) the Second Main Theorem(SMT)
分类号:
O 174.5
DOI:
10.16357/j.cnki.issn1000-5862.2018.01.01
文献标志码:
A
摘要:
R.Nevanlinna在Picard 定理和Borel 定理基础上,发表了他的论文,并建立了一个以其名字命名的理论.此后,Nevanlinna理论已经成为在复分析、复几何和多复变函数的一个重要研究领域.该文旨在回顾以往研究中的一些重要进展,并对Nevanlinna理论研究中最新进展进行了部分综述.
Abstract:
Being based on Picard's and Borel's theorems,R. Nevanlinna published his paper and evolved a theory affiliated with his name.Since then the Nevanlinna theory has become an important subject in complex analysis,complex geometry and several complex variables.Some important developments in the past research are recalled in this paper,as well as a partial survey on some most recent progress in the study of Nevanlinna theory is given.

参考文献/References:

[1] Nevanlinna R.Zur theorie der meromorphen funktionen [J].Acta Mathematica,1925,46(1/2):1-99.
[2] Weyl H.Meromorphic functions and analytic curves [M].Princeton:Princeton Univ Press,1943.
[3] Chern S S.Complex analytic mappings of Riemann surfaces I [J].Amer J Math,1960,82(2):323-337.
[4] Ru Min.Nevanlinna theory and its relation to diophantine approximation [M].River Edge:World Scientific,2001.
[5] Carlson J,Griffiths P.A defect relation for equidimensional holomorphic mappings between algebraic varieties [J].Ann of Math,1972,95(3):557-584.
[6] Cartan H.Sur les zeros des combinaisions linearires de p fonctions holomorpes donnees [J].Mathematica:Cluj,1933,7:80-103.
[7] Ru Min.On a general form of the second main theorem [J].Trans Amer Math Soc,1997,349(12):5093-5105.
[8] Corvaja P,Zannier U.A subspace theorem approach to integral points on curves [J].Comptes Rendus Mathematique,2002,334(4):267-271.
[9] Faltings G,Wüstholz G.Diophantine approximations on projective varieties [J].Invent Math,1994,116(1):109-138.
[10] Corvaja P,Zannier U.On integral points on surfaces [J].Ann of Math,2004,160(2):705-726.
[11] Corvaja P,Zannier U.On a general Thue's equation [J].Amer J Math,2004,126(5):1033-1055.
[12] Evertse J H,Ferretti R G.Diophantine inequalities on projective varieties [J].Int Math Res Notices,2002,12(25):1295-1330.
[13] Evertse J H,Ferretti R G.A generalization of the subspace theorem with polynomials of higher degree [M].NewYork,Vienna:Springer,2008,16:175-198. s
[14] Ru Min.A general Diophantine inequality [J].Functions et Approximation,2017,56(2):143-163.
[15] Ru Min,Wang Julie Tzu-Yueh.A subspace theorem for subvarieties [J].Algebra and Number Theory,2017,11(10):2323-2337.
[16] Autissier P.On the nondensity of integral points [J].Duke Math J,2011,158(1):13-27.
[17] Ru Min.A defect relation for holomorphic curves intersecting hypersurfaces [J].Amer J Math,2004,126(1):215-226.
[18] Ru Min.Holomorphic curves into algebraic varieties [J].Annals of Mathematics,2009,169(1):255-267.
[19] Ru Min.A defect relation for holomorphic curves intersecting general divisors in projective varieties [J].J Geometric Analysis,2016,26(4):2751-2776.
[20] Levin A.Generalizations of Siegel's and Picard's theorems [J].Ann of Math,2009,170(2):609-655.
[21] Ru Min,Vojta P.Birational Nevanlinna constant and its consequences [J].Preprint,arXiv:1608.05382 [math.NT].
[22] Vojta P.Diophantine approximation and value distribution theory [M].Berlin:Springer-Verlag,1987.
[23] Hussein S,Ru Min.A general defect relation and height inequality for divisors in subgeneral position [J].to appear in Asian J of Math.

相似文献/References:

[1]余民权,徐洪焱*,刘 林.几类复域偏微差分方程整函数解的存在性与形式[J].江西师范大学学报(自然科学版),2021,(06):620.[doi:10.16357/j.cnki.issn1000-5862.2021.06.10]
 YU Minquan,XU Hongyan*,LIU Lin.The Existence and Forms of Entire Solutions of Several Complex Partial Differential-Difference Equations[J].Journal of Jiangxi Normal University:Natural Science Edition,2021,(01):620.[doi:10.16357/j.cnki.issn1000-5862.2021.06.10]
[2]徐宜会,刘晓兰,李艳芳,等.复域非线性偏微q-差分方程的超越解[J].江西师范大学学报(自然科学版),2023,(04):331.[doi:10.16357/j.cnki.issn1000-5862.2023.04.01]
 XU Yihui,LIU Xiaolan,LI Yanfang,et al.The Transcendental Solutions of Several Complex Nonlinear Partial Differential q-Difference Equations[J].Journal of Jiangxi Normal University:Natural Science Edition,2023,(01):331.[doi:10.16357/j.cnki.issn1000-5862.2023.04.01]

备注/Memo

备注/Memo:
收稿日期:2017-07-28
基金项目:Simons数学基金(521604)和美国国家安全局数学课题(H98230-11-1-0201)资助项目.
作者简介:汝 敏(1963-),男,江苏吴江人,美国休斯顿大学终身教授,主要从事复分析、丢番图逼近和微分几何方面的研究.E-mail:minru@math.uh.edu
更新日期/Last Update: 2018-02-20