[1]李 佳,丁树良.基于GRM模型的CAT分层方法在校准误差中的应用研究[J].江西师范大学学报(自然科学版),2018,(04):374-378.[doi:10.16357/j.cnki.issn1000-5862.2018.04.09]
 LI Jia,DING Shuliang.The Several Stratified Methods of CAT in the Presence of Calibration Error on GRM[J].Journal of Jiangxi Normal University:Natural Science Edition,2018,(04):374-378.[doi:10.16357/j.cnki.issn1000-5862.2018.04.09]
点击复制

基于GRM模型的CAT分层方法在校准误差中的应用研究()
分享到:

《江西师范大学学报》(自然科学版)[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2018年04期
页码:
374-378
栏目:
出版日期:
2018-08-20

文章信息/Info

Title:
The Several Stratified Methods of CAT in the Presence of Calibration Error on GRM
文章编号:
1000-5862(2018)04-0374-05
作者:
李 佳丁树良
江西师范大学计算机信息工程学院,江西 南昌 330022
Author(s):
LI JiaDING Shuliang
College of Computer Information Engineering,Jiangxi Normal University,Nanchang Jiangxi 330022,China
关键词:
计算机化自适应测验 GRM模型 B分块a分层方法 机会红利 影子题库
Keywords:
CAT GRM a-stratified method with B blocking capitalization on chance shadow pool
分类号:
B 841.7
DOI:
10.16357/j.cnki.issn1000-5862.2018.04.09
文献标志码:
A
摘要:
在计算机化自适应测验(CAT)中,0-1评分模型下b组块a分层的方法(BASTR)可以提高测量准确性的同时平衡项目的曝光率,但在多级评分模型中项目难度/步骤参数有多个,无法直接使用该方法; 又因为信息函数可以较好地综合被试能力和项目参数,但最大信息量选题策略的测验安全性太低.因此,将多级评分模型中的多个参数综合成一个指标作为b分块的依据,模仿BASTR方法,提出5种新的B分块a分层方法,并且采用“影子题库”下最大信息量的选题方法.在等级反应模型(GRM)下蒙特卡洛实验结果表明,新方法在测验精度、题库利用率和机会红利等评价指标中总体表现良好,B_max-min分块方法表现最优.
Abstract:
For dichotomous scoring,the a-stratified method with b blocking(BASTR)is an effective and safe method for computerized adaptive testing(CAT).But it could not be applied to the polytomous scoring CAT,because there are too many parameters in the polytomous item response model.It is well known that the Fisher information function is a good comprehension of all item parameters as well as the ability parameter,but the maximum Fisher information(MFI)method derogates the security of CAT.Five new stratified methods are proposed in this paper.The new methods are comprehension of all information of the item parameters for polytomous items and play the role of BASTR.Because "shadow pool" can improve the uniformity of item bank, so the item select strategy is MFI under "shadow pool".The results of Monte Carlo study of graded response model(GRM)show that the new methods has better effect, and B_max-min method is the best one.

参考文献/References:

[1] 漆书青,戴海崎,丁树良.现代教育与心理测量学原理[M].北京:高等教育出版社,2002:154-155.
[2] 陈平,丁树良,林海菁,等.等级反应模型下计算机化自适应测验选题策略[J].心理学报,2006,38(3):461-467.
[3] 戴海琦,陈德枝,丁树良,等.多级评分题计算机自适应测验选题策略比较[J].心理学报,2006,38(5):778-783.
[4] 刘珍,丁树良,林海菁.基于GPCM的计算机自适应测验选题策略比较[J].心理学报,2008,40(5):618-625.
[5] 程小扬,丁树良.拓广分部评分模型下计算机自适应测验变加权选题策略[J].心理科学,2011,34(4):965-969.
[6] 罗芬,丁树良,王晓庆.多极评分计算机化自适应测验动态综合选题策略[J].心理学报,2012,44(3):400-412.
[7] 王晓庆,罗芬,丁树良,等.多极评分计算机化自适应动态调和平均选题策略[J].心理学探新,2016,36(3):270-275.
[8] Lord F M,Wingersky M S.An investigation of methods for reducing samplingerror in certain IRT procedures[J].Applied Psychological Measurement,1983,8(2):347-364.
[9] Chang Huahua,Ying Zhiliang.a-stratified multistage computerized adaptive testing[J].Applied Psychological Measurement,1999,23(3):211-222.
[10] Chang Huahua,Jia heqian,Ying Zhiliang.a-stratified multistage computerized adaptivetesting with b blocking[J].Applied Psychological Measurement,2001,25(4):333-341.
[11] 李佳,丁树良.多种分层方法在CAT校准误差中的应用研究[J].江西师范大学学报:自然科学版,2016,39(1):69-72.
[12] van der Linden W J,Glas C A W.Capitalization on item calibration error in adaptive testing[J].Applied Measurement in Education,2000,13(1):35-53.
[13] Cheng Ying,Jeffrey M Patton,Can Shao.a-stratified computerized adaptive testing in the presence of calibration[J].Educational and Psychological Measurement,2015,75(2):260-283.
[14] Jeffrey M Patton,Cheng Ying,Yuan Kehai,et al.The influence of item calibration error on variable-length computerized adaptive testing[J].Applied Psychological Measurement,2013,75(1):1-17.
[15] 陈青,丁树良,朱隆尹,等.3参数等级反应模型及其参数估计[J].江西师范大学学报:自然科学版,2010,34(2):117-122.
[16] 程小扬,丁树良,巫华芳,等.多级评分模型下的题库结构对CAT的影响分析[J].心理学探新,2014,34(5):452-456.
[17] 程小扬,丁树良,严深海.引入曝光因子的计算机化自适应测验选题策略[J].心理学报,2011,43(2):203-212.

相似文献/References:

[1]程小扬,丁树良,朱隆尹,等.等级评分模型下的最大信息量分层选题策略[J].江西师范大学学报(自然科学版),2012,(05):446.
 CHENG Xiao-yang,DING Shu-liang,ZHU Long-yin,et al.The Stratified Item Selection Strategy with Maximal Information under Graded Response Model[J].Journal of Jiangxi Normal University:Natural Science Edition,2012,(04):446.
[2]汤楠,丁树良.一阶段选题的最大优先级指标的修正[J].江西师范大学学报(自然科学版),2012,(05):452.
 TANG Nan,DING Shu-liang.Amendment on Maximum Priority Index in One Phase Strategy[J].Journal of Jiangxi Normal University:Natural Science Edition,2012,(04):452.
[3]李萍,甘登文,丁树良.自动控制区分度作用的选题策略研究[J].江西师范大学学报(自然科学版),2013,(01):101.
 LI Ping,GAN Deng-wen,DING Shu-liang.The Study of Item Selection Strategy-Automatic Control for the Role of Discrimination Index[J].Journal of Jiangxi Normal University:Natural Science Edition,2013,(04):101.
[4]詹沛达,王立君,杨卫敏.引入内容平衡的最大信息量组块分层选题策略[J].江西师范大学学报(自然科学版),2013,(01):106.
 ZHAN Pei-da,WANG Li-jun,YANG Wei-min.The Maximum Information Stratification Method with Content Balancing in Computerized Adaptive Testing[J].Journal of Jiangxi Normal University:Natural Science Edition,2013,(04):106.
[5]章沪超,丁树良.各层分布近似的计算机化自适应测验分层选题策略[J].江西师范大学学报(自然科学版),2013,(06):652.
 ZHANG Hu-chao,DING Shu-liang.Similar Distributed Stratification Method for Computerized Adaptive Testing[J].Journal of Jiangxi Normal University:Natural Science Edition,2013,(04):652.
[6]戴勰,甘登文,丁树良.结合影子题库的选题策略[J].江西师范大学学报(自然科学版),2013,(06):657.
 DAI Xie,GAN Deng-wen,DING Shu-liang.New Item Selection Method Combining with Shadow Bank[J].Journal of Jiangxi Normal University:Natural Science Edition,2013,(04):657.
[7]章沪超,丁树良,戴勰,等.基于抽样原理的计算机化自适应测验选题策略[J].江西师范大学学报(自然科学版),2014,(02):119.
 ZHANG Hu-chao,DING Shu-liang,DAI Xie,et al.The New Item Selection Strategy for Computerized Adaptive Testing Based on Sampling Principle[J].Journal of Jiangxi Normal University:Natural Science Edition,2014,(04):119.
[8]艾国金,甘登文,丁树良.计算机化自适应诊断测验双重约束变长终止规则[J].江西师范大学学报(自然科学版),2015,(05):449.
 AI Guojin,GAN Dengwen,DING Shuliang.The Dual Restrictions Variable-Length Termination Rule in Cognitive Diagnosis Computerized Adaptive Testing[J].Journal of Jiangxi Normal University:Natural Science Edition,2015,(04):449.
[9]张龙飞,刘 凯,宋 鸽,等.计算机化自适应测验技术在情绪智力智能测评中的初步应用——基于项目反应理论[J].江西师范大学学报(自然科学版),2020,(05):454.[doi:10.16357/j.cnki.issn1000-5862.2020.05.02]
 ZHANG Longfei,LIU Kai,SONG Ge,et al.The Application of CAT on Emotional Intelligence with Item Response Theory[J].Journal of Jiangxi Normal University:Natural Science Edition,2020,(04):454.[doi:10.16357/j.cnki.issn1000-5862.2020.05.02]
[10]李 佳,丁树良*,况天昊.区分度与测验进程相匹配的CAT选题策略[J].江西师范大学学报(自然科学版),2021,(04):384.[doi:10.16357/j.cnki.issn1000-5862.2021.04.10]
 LI Jia,DING Shuliang*,KUANG Tianhao.The Item Selection Strategy on Composing the Discrimination with the Test Process in CAT[J].Journal of Jiangxi Normal University:Natural Science Edition,2021,(04):384.[doi:10.16357/j.cnki.issn1000-5862.2021.04.10]

备注/Memo

备注/Memo:
收稿日期:2017-08-16
基金项目:国家自然科学基金(31500909,31360237,31300876),教育部人文社会科学研究青年基金(BYJC880060)和江西省教育厅科学技术2017年一般项目(GJJ170212)资助项目.
作者简介:李 佳(1979-),女,江西南昌人,副教授,主要从事计算机辅助教学和心理测量方面的研究.E-mail:1276676143@qq.com
更新日期/Last Update: 2018-08-20