[1]张荣斌,李 莉,蔡建信,等.尖晶石表面结构与催化性能的研究进展[J].江西师范大学学报(自然科学版),2019,(06):565-575.[doi:10.16357/j.cnki.issn1000-5862.2019.06.03]
 ZHANG Rongbin,LI Li,CAI Jianxin,et al.The Research Progress on Surface Structure and Catalytic Properties of Spinels[J].Journal of Jiangxi Normal University:Natural Science Edition,2019,(06):565-575.[doi:10.16357/j.cnki.issn1000-5862.2019.06.03]
点击复制

尖晶石表面结构与催化性能的研究进展()
分享到:

《江西师范大学学报》(自然科学版)[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2019年06期
页码:
565-575
栏目:
纳米材料与绿色化学
出版日期:
2019-12-10

文章信息/Info

Title:
The Research Progress on Surface Structure and Catalytic Properties of Spinels
文章编号:
1000-5862(2019)06-0565-11
作者:
张荣斌1李 莉1蔡建信1庆绍军2高志贤2冯 刚1*
1.江西省环境与能源催化重点实验室,南昌大学化学学院,江西 南昌 330031; 2.中国科学院山西煤炭化学研究所,山西 太原 030001
Author(s):
ZHANG Rongbin1LI Li1CAI Jianxin1QING Shaojun2GAO Zhixian2FENG Gang1*
1.Key Laboratory of Jiangxi Province for Environment and Energy Catalysis,College of Chemistry,Nanchang University,Nanchang Jiangxi 330031,China; 2.Institute of Shanxi Coal Chemistry,Chinese Academy of Sciences,Taiyuan Shanxi 030001,China
关键词:
尖晶石 电催化 光催化 甲醇重整制氢 密度泛函理论
Keywords:
spinel oxides electrocatalysis photocatalysis methanol steam reforming for hydrogen production density functional theory
分类号:
O 643; TM 277
DOI:
10.16357/j.cnki.issn1000-5862.2019.06.03
文献标志码:
A
摘要:
尖晶石型氧化物具有优异的催化性能,其金属原子的落位、表面原子配位环境、禁带宽度、电荷布局等均影响其催化性能.该文综述了尖晶石应用于电催化、光催化、甲醇重整制氢催化体系的研究进展,强调了尖晶石表面结构与催化性能的关系,其中含Co、Mn尖晶石广泛应用于电催化体系,Mn的占据几何位置及化合价对于解释含Mn尖晶石的催化ORR和OER性能是至关重要的; 尖晶石由于带隙较小而可以有效利用可见光,在光催化制氢及光降解方面有优异的性能; CuAl2O4在甲醇重整制氢体系中有优异的催化性能,Ni、Cu团簇负载在尖晶石表面上可以抑制Ni、Cu形成大颗粒,助剂Ni掺杂在尖晶石表面中可以缓释铜的释放从而使得催化剂稳定性增强,Ni更倾向于掺杂在表面中的八面体Al位; 水在CuAl2O4尖晶石表面上可以形成解离吸附.
Abstract:
Spinel oxides have excellent catalytic performances.The location of metal ions,coordination environment of surface atoms,band gapes and electron distribution of the oxides have influences to the catalytic properties.The present work discuss the application of spinel into electrocatalysis,photocatalysis and methanol steam reforming(MSR)for hydrogen production.The relationship between the surface structure of spinel and catalytic performance is emphasizes.The spinel containing Co and Mn are widely used in electrocatalytic systems and the geometric position and valence of Mn are important for explaining the catalytic oxygen-reduction reaction(ORR)and oxygen-evolution reaction(OER)properties.Spinel can effectively utilize visible light due to its small band gap,and has excellent performance in photocatalytic hydrogen production and photodegradation.CuAl2O4 has excellent catalytic performance in MSR.The surfaces of spinel can inhibit the growth of Ni and Cu clusters into large particles.The additive Ni doping can slow down the releasing of copper in the surface of the spinel to enhance the stability of the catalyst.The doped Ni is more likely to be located in the surface of the octahedral Al site.The adsorption of the reactant H2O on the surface of the CuAl2O4 spinel can form dissociative adsorption.

参考文献/References:

[1] 刘俊,雷跃荣,陈希明,等.尖晶石结构材料的最新研究进展[J].材料导报,2008,22(11):26-29.
[2] Wang Qikun,Chang Qibing,Wang Yongqing,et al.Ultrafine CoAl2O4 ceramic pigment prepared by Pechini-sacrificial agent method[J].Materials Letters,2016,173(15):64-67.
[3] Manikandan A,Durka M,Selvi M A,et al.Aloe vera plant extracted green synthesis,structural and optomagnetic characterizations of spinel CoxZn1-xAl2O4 nano-catalysts[J].Journal of Nanoscience and Nanotechnology,2016,16(1):357.
[4] Manikandan A,Durka M,Selvi M A,et al.Sesamum indicum plant extracted microwave combustion synthesis and opto-magnetic properties of spinel MnxCo1-xAl2O4 nano-catalysts[J].Journal of Nanoscience and Nanotechnology,2016,16(1):448-456.
[5] Dinesh R,Takashi N,Akitsugu K,et al.Transparent CoAl2O4 hybrid nano pigment by organic ligand-assisted supercritical water[J].Journal of the American Chemical Society,2007,129(36):11061-11066.
[6] Jayasree S,Manikandan A,Antony S A,et al.Magneto-optical and catalytic properties of recyclable spinel NiAl2O4 nanostructures using facile combustion methods[J].Journal of Superconductivity and Novel Magnetism,2016,29(1):253-263.
[7] Carta D,Casula M F,Falqui A,et al.A structural and magnetic investigation of the inversion degree in ferrite nanocrystals MFe2O4(M=Mn,Co,Ni)[J].The Journal of Physical Chemistry C,2009,113(20):8606-8615.
[8] Gewirth A A,Thorum M S.Electroreduction of dioxygen for fuel-cell applications:materials and challenges[J].Inorganic Chemistry,2010,49(8):3557-3566.
[9] Armand M,Tarascon J M.Building better batteries[J].Nature,2008,451(7179): 652-657.
[10] Grimaud A,Hong W T,Shao-Horn Y,et al. Anionic redox processes for electrochemical devices[J].Nature Materials,2016,15(2):121-126.
[11] Stamenkovic V R,Fowler B,Mun B S,et al.Improved oxygen reduction activity on Pt3Ni(111)via increased surface site availability[J].Science,2007,315(5811):493-497.
[12] Stoerzinger K A,Qiao Liang, Biegalski M D,et al.Orientation-dependent oxygen evolution activities of rutile IrO2 and RuO2[J].The Journal of Physical Chemistry Letters,2014,5(10):1636-1641.
[13] Paoli E A,Masini F,Frydendal R,et al.Oxygen evolution on well-characterized mass-selected Ru and RuO2 nanoparticles[J].Chemical Science,2014,6(1):190-196.
[14] Neburchilov V,Wang Haijiang,Martin J J,et al.A review on air cathodes for zinc-air fuel cells[J].Journal of Power Sources,2010,195(5):1271-1291.
[15] Liang Yongye,Wang Hailiang,Zhou Jigang,et al.Covalent hybrid of spinel manganese-cobalt oxide and graphene as advanced oxygen reduction electrocatalysts[J].Journal of the American Chemical Society,2012,134(7):3517-3523.
[16] Ning Rui,Tian Jingqi,Asiri A M,et al.Spinel CuCo2O4 nanoparticles supported on N-doped reduced graphene oxide:a highly active and stable hybrid electrocatalyst for the oxygen reduction reaction[J].Langmuir,2013,29(43):13146-13151.
[17] Wei Chao,Feng Zhenxing,Scherer G G,et al.Cations in octahedral sites:a descriptor for oxygen electrocatalysis on transition-metal spinels[J].Advanced Materials,2017,29(23):1606800.
[18] Zhu Huiyuan,Zhang Sen,Huang Yuxi,et al.Monodisperse MxFe3-xO4(M=Fe,Cu,Co,Mn)nanoparticles and their electrocatalysis for oxygen reduction reaction[J].Nano Letters,2013,13(6):2947-2951.
[19] Rios E,Gautier J L,Poillerat G,et al.Mixed valency spinel oxides of transition metals and electrocatalysis:case of the MnxCo3-xO4 system[J].Electrochimica Acta,1998,44(8):1491-1497.
[20] Cheng Fangyi,Shen Jian,Peng Bo,et al.Rapid room-temperature synthesis of nano-crystalline spinels as oxygen reduction and evolution electrocatalysts[J].Nature Chemistry,2011,3(1):79-84.
[21] Liang Yongye,Li Yanguang,Wang Hailiang,et al.Co3O4 nanocrystals on graphene as a synergistic catalyst for oxygen reduction reaction[J].Nature Materials,2011,10(10):780-786.
[22] Balci F M,Karakaya I,Alsac E P,et al.Synthesis of mesoporous LiMn2O4 and LiMn2-xCoxO4 thin films using the MASA approach as efficient water oxidation electrocatalysts[J].Journal of Materials Chemistry A,2018,6(28):13925-13933.
[23] Bordeneuve H,Tenailleau C,Guillemet-Fritsch S,et al.Structural variations and cation distributions in Mn3-xCoxO4(0≤x≤3)dense ceramics using neutron diffraction data[J].Solid State Sciences,2010,12(3):379-386.
[24] Zhou Ye,Sun Shengnan,Xi Shibo,et al.Superexchange effects on oxygen reduction activity of edge-sharing[CoxMn1-xO6] octahedra in spinel oxide[J].Advanced Materials,2018,30(11):1705407.
[25] Kim T W,Woo M A,Regis M,et al.Electrochemical synthesis of spinel type ZnCo2O4 electrodes for use as oxygen evolution reaction catalysts[J].The Journal of Physical Chemistry Letters,2014,5(13):2370-2374.
[26] Grimaud A,Carlton C E,Risch M,et al.Oxygen evolution activity and stability of Ba6Mn</sub>5O16,Sr</sub>4Mn2CoO9,and Sr6Co5O15:the influence of transition metal coordination[J].The Journal of Physical Chemistry C,2013,117(49):25926-25932.
[27] Zhou Ye,Du Yonghua,Xi Shibo,et al.Spinel manganese ferrites for oxygen electrocatalysis:effect of Mn valency and occupation site[J].Electrocatalysis,2018,9(3):287-292.
[28] 吕东生,刘煦.一些金属阳离子的掺杂对尖晶石LiMn2O4的结构和电化学性质的影响[J].中国锰业,2002,20(2):30-35.
[29] 崔萍,贾志杰,李兰英,等.锌掺杂正极材料尖晶石LiMn2O4的制备及电化学性能[J].功能材料,2011,42(s5):888-891.
[30] Wu Tianze,Sun Shengnan,Song Jiajia,et al.Iron-facilitated dynamic active-site generation on spinel CoAl2O4 with self-termination of surface reconstruction for water oxidation[J].Nature Catalysis,2019,2(9):763-772.
[31] Wang Xiaotong,Ouyang Ting,Wang Ling,et al.Redox-inert Fe3+ ions in octahedral sites of Co-Fe spinel oxides with enhanced oxygen catalytic activity for rechargeable Zinc-Air batteries[J].Angewandte Chemie, 2019,131(38):13425-13430.
[32] Xu Shihong,Shangguan Wenfeng,Yuan Jian,et al.Preparations and photocatalytic degradation of methyl orange in water on magnetically separable Bi12TiO20 supported on nickel ferrite[J].Science and Technology of Advanced Materials,2016,8(1):40-46.
[33] Kitano M,Hara M.Heterogeneous photocatalytic cleavage of water[J].Journal of Materials Chemistry,2010,20(4):627-641.
[34] Boumaza S,Boudjemaa A,Bouguelia A,et al.Visible light induced hydrogen evolution on new hetero-system ZnFe2O4/SrTiO3[J].Applied Energy,2010,87(7):2230-2236.
[35] Rekhila G,Bessekhouad Y,Trari M.Visible light hydrogen production on the novel ferrite NiFe2O4[J].International Journal of Hydrogen Energy,2013,38(15):6335-6343.
[36] Dom R,Subasri R,Radha K,et al.Synthesis of solar active nanocrystalline ferrite,MFe2O</sub>4(M:Ca,Zn,Mg)photocatalyst by microwave irradiation[J].Solid State Communications,2011,151(6):470-473.
[37] Xu Xiaoxiang,Azad A K,Irvine John T S.Photocatalytic H2 generation from spinels ZnFe2O</sub>4,ZnFeGaO4 and ZnGa2O4[J].Catalysis Today,2013,199:22-26.
[38] Rani B J,Saravanakumar B,Ravi G,et al.Structural,optical and magnetic properties of CuFe2O4 nanoparticles[J].Journal of Materials Science:Materials in Electronics,2018,29(3):1975-1984.
[39] 姜妍彦,李景刚,宁桂玲,等.尖晶石型CuAl2O4纳米粉体的制备及其可见光催化性能[J].硅酸盐学报,2006,34(9):1084-1087.
[40] 姜妍彦,李景刚,隋小涛,等.锌尖晶石ZnM2O4(M=Cr,Mn,Fe)纳米晶的制备及其在可见光下对染料的光催化降解[J].硅酸盐学报,2007,35(11):1439-1443.
[41] Naderi M,Shamirian A,Edrisi M.Synthesis,characterization and photocatalytic properties of nanoparticles CuAl2O4 by Pechini method using taguchi statistical design[J].Journal of Sol-Gel Science and Technology,2011,58(2):557-563.
[42] Saadi S,Bouguelia A,Trari M.Photoassisted hydrogen evolution over spinel CuM2O4(M=Al,Cr,Mn,Fe and Co)[J].Renewable Energy,2006,31(14):2245-2256.
[43] Kezzim A,Nasrallah N,Abdi A,et al.Visible light induced hydrogen on the novel hetero-system CuFe2O4/TiO2[J].Energy Conversion and Management,2011,52(8):2800-2806.
[44] Nasrallah N,Kebir M,Koudri Z,et al.Photocatalytic reduction of Cr(VI)on the novel hetero-system CuFe2O4/CdS[J].Journal of Hazardous Materials,2011,185(2):1398-1404.
[45] Yang Hua,Li Ruishan,Feng Wangjun,et al.Fabrication of nickel ferrite-graphene nanocomposites and their photocatalytic properties[J].Materials Research Innovations,2014,18(7):519-523.
[46] Zou Lianli,Wang Qiuju,Shen Xiangqian,et al.Fabrication and dye removal performance of magnetic CuFe2O4@CeO2 nanofibers[J].Applied Surface Science,2015,332:674-681.
[47] Hussain S,Hussain S,Waleed A,et al.Fabrication of CuFe2O4/α-Fe2O3 composite thin films on FTO coated glass and 3-D nanospike structures for efficient photoelectrochemical water splitting[J].ACS Applied Materials and Interfaces,2016,8(51):35315-35322.
[48] Yao Yunjin,Lu Fang,Zhu Yanping,et al.Magnetic core-shell CuFe2O4@C3N4 hybrids for visible light photocatalysis of Orange II[J].Journal of Hazardous Materials,2015,297:224-233.
[49] Patil S S,Tamboli M S,Deonikar V G,et al.Magnetically separable Ag3PO4/NiFe2O4 composites with enhanced photocatalytic activity[J].Dalton Transactions,2015,44(47):20426-20434.
[50] Kim H S,Kim D,Kwak B S,et al.Synthesis of magnetically separable core@shell structured NiFe2O4@TiO2 nanomaterial and its use for photocatalytic hydrogen production by methanol/water splitting[J].Chemical Engineering Journal,2014,243(4):272-279.
[51] Qin Jiayi,Huo Jingpei,Zhang Piyong,et al.Improving the photocatalytic hydrogen production of Ag/g-C3N4 nanocomposites by dye-sensitization under visible light irradiation[J].Nanoscale,2016,8(4):2249-2259.
[52] Ji Haiyan,Jing Xiaocui,Xu Yuanguo,et al.Magnetic g-C3N4/NiFe2O4 hybrids with enhanced photocatalytic activity[J].RSC Advances,2015,5(71):57960-57967.
[53] Soto-Arreola A,Huerta-Flores A M,Mora-Hernández J M,et al.Improved photocatalytic activity for water splitting over MFe2O4-ZnO(M=Cu and Ni)type-ll heterostructures[J].Journal of Photochemistry and Photobiology A:Chemistry,2018,364:433-442.
[54] 刘楠,姜妍彦,唐乃玲,等.AB2O4型尖晶石材料的制备及其在可见光下的催化氧化特性[J].硅酸盐学报,2011,39(2):290-295.
[55] Sá S,Silva H,Brandao L,et al.Catalysts for methanol steam reforming:a view[J].Applied Catalysis B:Environmreental,2010,99(1):43-57.
[56] Yong S T,Ooi C W,Chai S P,et al.Review of methanol reforming-Cu-based catalysts,surface reaction mechanisms,and reaction schemes[J].International Journal of Hydrogen Energy,2013,38(22):9541-9552.
[57] Faungnawakij K,Shimoda N,Fukunaga T,et al.Crystal structure and surface species of CuFe2O4 spinel catalysts in steam reforming of dimethyl ether[J].Applied Catalysis B Environmental,2009,92(3):341-350.
[58] Faungnawakij K,Shimoda N,Kikuchi R,et al.Cu-based spinel catalysts CuB2O4(B=Fe,Mn,Cr,Ga,Al,Fe0.75Mn0.25)for steam reforming of dimethyl ether[J].Applied Catalysis A General,2008,341(1):139-145.
[59] Gokhale A A,Dumesic J A,Manos M.On the mechanism of low-temperature water gas shift reaction on copper[J].Journal of the American Chemical Society,2008,130(4):1402-1414.
[60] Zou Xueru,Liao Shumei,Huang Kuowei,et al.Chemistry of anilido phosphine complexes of nickel[J].Chemistry Letters,2019,48(8):811-819.
[61] 李光俊,郗宏娟,张素红,等.尖晶石CuM2O4(M=Al、Fe、Cr)催化甲醇重整反应的特性[J].燃料化学学报,2012,40(12):1466-1471.
[62] 郗宏娟,李光俊,庆绍军,等.固相法合成铜铝尖晶石催化甲醇重整反应[J].燃料化学学报,2013,41(8):998-1002.
[63] Xi Hongjuan,Hou Xiaoning,Liu Yajie,et al.Cu-Al spinel oxide as an efficient catalyst for methanol steam reforming[J].Angewandte Chemie-International Edition,2014,53(44):11886-11889.
[64] 覃发玠,刘雅杰,庆绍军,等.甲醇制氢铜铝尖晶石缓释催化剂的研究:不同铜源合成的影响[J].燃料化学学报,2017,45(12):1481-1488.
[65] Feng Gang,Ganduglia-Pirovano M V,Huo Chunfang,et al.Hydrogen spillover to copper clusters on hydroxylated γ-Al2O3[J].The Journal of Physical Chemistry C,2018,122(32):18445-18455.
[66] Shi Liu,Wang Dashan,Yu Xiaohu,et al.Adsorption of Cun(n=1~4)clusters on CuAl2O4 spinel surface:a DFT study[J].Molecular Catalalysis,2019,468:29-35.
[67] Li Li,Shi Liu,Yu Xiaohu,et al.Adsorption of Nin(n=1~4)clusters on perfect and O-defective CuAl2O4 surfaces:a DFT study[J].Chinese Chemistry Letters,2019,30(6):1147-1152.
[68] arapatkat T J.XPS-XAES study of charge transfers at Ni/Al2O3/Al systems[J].Chemical Physics Letters,1993,212(s1/s2):37-42.
[69] Liu Yajie,Qing Shaojun,Hou Xiaoning,et al.Cu-Ni-Al spinel oxide as an efficient durable catalyst for methanol steam reforming[J].Chemcatchem,2018,10(24):5698-5706.
[70] Li Li,Meng Shuai,Yu Xiaohu,et al.The effects of Fe,Co and Ni doping in CuAl2O4 spinel surface and bulk:a DFT study[J].The Journal of Physical Chemistry C,subimitted.
[71] Shi Liu,Meng Shuai,Li Li,et al.High coverage H2O adsorption on CuAl2O4 surface:a DFT study[J].Applied Surface Science,subimitted.

备注/Memo

备注/Memo:
收稿日期:2019-07-20
基金项目:国家自然科学基金(21763018,21673270,21503254,21875096)和江西省自然科学基金(20181BAB203016,20181BCD40004)资助项目.
作者简介:张荣斌(1969-),男,江西余干人,教授,博士,博士生导师,主要从事稀土催化材料方面的研究.E-mail:rbzhang@ncu.edu.cn
更新日期/Last Update: 2019-12-10