参考文献/References:
[1] 刘俊,雷跃荣,陈希明,等.尖晶石结构材料的最新研究进展[J].材料导报,2008,22(11):26-29.
[2] Wang Qikun,Chang Qibing,Wang Yongqing,et al.Ultrafine CoAl2O4 ceramic pigment prepared by Pechini-sacrificial agent method[J].Materials Letters,2016,173(15):64-67.
[3] Manikandan A,Durka M,Selvi M A,et al.Aloe vera plant extracted green synthesis,structural and optomagnetic characterizations of spinel CoxZn1-xAl2O4 nano-catalysts[J].Journal of Nanoscience and Nanotechnology,2016,16(1):357.
[4] Manikandan A,Durka M,Selvi M A,et al.Sesamum indicum plant extracted microwave combustion synthesis and opto-magnetic properties of spinel MnxCo1-xAl2O4 nano-catalysts[J].Journal of Nanoscience and Nanotechnology,2016,16(1):448-456.
[5] Dinesh R,Takashi N,Akitsugu K,et al.Transparent CoAl2O4 hybrid nano pigment by organic ligand-assisted supercritical water[J].Journal of the American Chemical Society,2007,129(36):11061-11066.
[6] Jayasree S,Manikandan A,Antony S A,et al.Magneto-optical and catalytic properties of recyclable spinel NiAl2O4 nanostructures using facile combustion methods[J].Journal of Superconductivity and Novel Magnetism,2016,29(1):253-263.
[7] Carta D,Casula M F,Falqui A,et al.A structural and magnetic investigation of the inversion degree in ferrite nanocrystals MFe2O4(M=Mn,Co,Ni)[J].The Journal of Physical Chemistry C,2009,113(20):8606-8615.
[8] Gewirth A A,Thorum M S.Electroreduction of dioxygen for fuel-cell applications:materials and challenges[J].Inorganic Chemistry,2010,49(8):3557-3566.
[9] Armand M,Tarascon J M.Building better batteries[J].Nature,2008,451(7179): 652-657.
[10] Grimaud A,Hong W T,Shao-Horn Y,et al. Anionic redox processes for electrochemical devices[J].Nature Materials,2016,15(2):121-126.
[11] Stamenkovic V R,Fowler B,Mun B S,et al.Improved oxygen reduction activity on Pt3Ni(111)via increased surface site availability[J].Science,2007,315(5811):493-497.
[12] Stoerzinger K A,Qiao Liang, Biegalski M D,et al.Orientation-dependent oxygen evolution activities of rutile IrO2 and RuO2[J].The Journal of Physical Chemistry Letters,2014,5(10):1636-1641.
[13] Paoli E A,Masini F,Frydendal R,et al.Oxygen evolution on well-characterized mass-selected Ru and RuO2 nanoparticles[J].Chemical Science,2014,6(1):190-196.
[14] Neburchilov V,Wang Haijiang,Martin J J,et al.A review on air cathodes for zinc-air fuel cells[J].Journal of Power Sources,2010,195(5):1271-1291.
[15] Liang Yongye,Wang Hailiang,Zhou Jigang,et al.Covalent hybrid of spinel manganese-cobalt oxide and graphene as advanced oxygen reduction electrocatalysts[J].Journal of the American Chemical Society,2012,134(7):3517-3523.
[16] Ning Rui,Tian Jingqi,Asiri A M,et al.Spinel CuCo2O4 nanoparticles supported on N-doped reduced graphene oxide:a highly active and stable hybrid electrocatalyst for the oxygen reduction reaction[J].Langmuir,2013,29(43):13146-13151.
[17] Wei Chao,Feng Zhenxing,Scherer G G,et al.Cations in octahedral sites:a descriptor for oxygen electrocatalysis on transition-metal spinels[J].Advanced Materials,2017,29(23):1606800.
[18] Zhu Huiyuan,Zhang Sen,Huang Yuxi,et al.Monodisperse MxFe3-xO4(M=Fe,Cu,Co,Mn)nanoparticles and their electrocatalysis for oxygen reduction reaction[J].Nano Letters,2013,13(6):2947-2951.
[19] Rios E,Gautier J L,Poillerat G,et al.Mixed valency spinel oxides of transition metals and electrocatalysis:case of the MnxCo3-xO4 system[J].Electrochimica Acta,1998,44(8):1491-1497.
[20] Cheng Fangyi,Shen Jian,Peng Bo,et al.Rapid room-temperature synthesis of nano-crystalline spinels as oxygen reduction and evolution electrocatalysts[J].Nature Chemistry,2011,3(1):79-84.
[21] Liang Yongye,Li Yanguang,Wang Hailiang,et al.Co3O4 nanocrystals on graphene as a synergistic catalyst for oxygen reduction reaction[J].Nature Materials,2011,10(10):780-786.
[22] Balci F M,Karakaya I,Alsac E P,et al.Synthesis of mesoporous LiMn2O4 and LiMn2-xCoxO4 thin films using the MASA approach as efficient water oxidation electrocatalysts[J].Journal of Materials Chemistry A,2018,6(28):13925-13933.
[23] Bordeneuve H,Tenailleau C,Guillemet-Fritsch S,et al.Structural variations and cation distributions in Mn3-xCoxO4(0≤x≤3)dense ceramics using neutron diffraction data[J].Solid State Sciences,2010,12(3):379-386.
[24] Zhou Ye,Sun Shengnan,Xi Shibo,et al.Superexchange effects on oxygen reduction activity of edge-sharing[CoxMn1-xO6] octahedra in spinel oxide[J].Advanced Materials,2018,30(11):1705407.
[25] Kim T W,Woo M A,Regis M,et al.Electrochemical synthesis of spinel type ZnCo2O4 electrodes for use as oxygen evolution reaction catalysts[J].The Journal of Physical Chemistry Letters,2014,5(13):2370-2374.
[26] Grimaud A,Carlton C E,Risch M,et al.Oxygen evolution activity and stability of Ba6Mn</sub>5O16,Sr</sub>4Mn2CoO9,and Sr6Co5O15:the influence of transition metal coordination[J].The Journal of Physical Chemistry C,2013,117(49):25926-25932.
[27] Zhou Ye,Du Yonghua,Xi Shibo,et al.Spinel manganese ferrites for oxygen electrocatalysis:effect of Mn valency and occupation site[J].Electrocatalysis,2018,9(3):287-292.
[28] 吕东生,刘煦.一些金属阳离子的掺杂对尖晶石LiMn2O4的结构和电化学性质的影响[J].中国锰业,2002,20(2):30-35.
[29] 崔萍,贾志杰,李兰英,等.锌掺杂正极材料尖晶石LiMn2O4的制备及电化学性能[J].功能材料,2011,42(s5):888-891.
[30] Wu Tianze,Sun Shengnan,Song Jiajia,et al.Iron-facilitated dynamic active-site generation on spinel CoAl2O4 with self-termination of surface reconstruction for water oxidation[J].Nature Catalysis,2019,2(9):763-772.
[31] Wang Xiaotong,Ouyang Ting,Wang Ling,et al.Redox-inert Fe3+ ions in octahedral sites of Co-Fe spinel oxides with enhanced oxygen catalytic activity for rechargeable Zinc-Air batteries[J].Angewandte Chemie, 2019,131(38):13425-13430.
[32] Xu Shihong,Shangguan Wenfeng,Yuan Jian,et al.Preparations and photocatalytic degradation of methyl orange in water on magnetically separable Bi12TiO20 supported on nickel ferrite[J].Science and Technology of Advanced Materials,2016,8(1):40-46.
[33] Kitano M,Hara M.Heterogeneous photocatalytic cleavage of water[J].Journal of Materials Chemistry,2010,20(4):627-641.
[34] Boumaza S,Boudjemaa A,Bouguelia A,et al.Visible light induced hydrogen evolution on new hetero-system ZnFe2O4/SrTiO3[J].Applied Energy,2010,87(7):2230-2236.
[35] Rekhila G,Bessekhouad Y,Trari M.Visible light hydrogen production on the novel ferrite NiFe2O4[J].International Journal of Hydrogen Energy,2013,38(15):6335-6343.
[36] Dom R,Subasri R,Radha K,et al.Synthesis of solar active nanocrystalline ferrite,MFe2O</sub>4(M:Ca,Zn,Mg)photocatalyst by microwave irradiation[J].Solid State Communications,2011,151(6):470-473.
[37] Xu Xiaoxiang,Azad A K,Irvine John T S.Photocatalytic H2 generation from spinels ZnFe2O</sub>4,ZnFeGaO4 and ZnGa2O4[J].Catalysis Today,2013,199:22-26.
[38] Rani B J,Saravanakumar B,Ravi G,et al.Structural,optical and magnetic properties of CuFe2O4 nanoparticles[J].Journal of Materials Science:Materials in Electronics,2018,29(3):1975-1984.
[39] 姜妍彦,李景刚,宁桂玲,等.尖晶石型CuAl2O4纳米粉体的制备及其可见光催化性能[J].硅酸盐学报,2006,34(9):1084-1087.
[40] 姜妍彦,李景刚,隋小涛,等.锌尖晶石ZnM2O4(M=Cr,Mn,Fe)纳米晶的制备及其在可见光下对染料的光催化降解[J].硅酸盐学报,2007,35(11):1439-1443.
[41] Naderi M,Shamirian A,Edrisi M.Synthesis,characterization and photocatalytic properties of nanoparticles CuAl2O4 by Pechini method using taguchi statistical design[J].Journal of Sol-Gel Science and Technology,2011,58(2):557-563.
[42] Saadi S,Bouguelia A,Trari M.Photoassisted hydrogen evolution over spinel CuM2O4(M=Al,Cr,Mn,Fe and Co)[J].Renewable Energy,2006,31(14):2245-2256.
[43] Kezzim A,Nasrallah N,Abdi A,et al.Visible light induced hydrogen on the novel hetero-system CuFe2O4/TiO2[J].Energy Conversion and Management,2011,52(8):2800-2806.
[44] Nasrallah N,Kebir M,Koudri Z,et al.Photocatalytic reduction of Cr(VI)on the novel hetero-system CuFe2O4/CdS[J].Journal of Hazardous Materials,2011,185(2):1398-1404.
[45] Yang Hua,Li Ruishan,Feng Wangjun,et al.Fabrication of nickel ferrite-graphene nanocomposites and their photocatalytic properties[J].Materials Research Innovations,2014,18(7):519-523.
[46] Zou Lianli,Wang Qiuju,Shen Xiangqian,et al.Fabrication and dye removal performance of magnetic CuFe2O4@CeO2 nanofibers[J].Applied Surface Science,2015,332:674-681.
[47] Hussain S,Hussain S,Waleed A,et al.Fabrication of CuFe2O4/α-Fe2O3 composite thin films on FTO coated glass and 3-D nanospike structures for efficient photoelectrochemical water splitting[J].ACS Applied Materials and Interfaces,2016,8(51):35315-35322.
[48] Yao Yunjin,Lu Fang,Zhu Yanping,et al.Magnetic core-shell CuFe2O4@C3N4 hybrids for visible light photocatalysis of Orange II[J].Journal of Hazardous Materials,2015,297:224-233.
[49] Patil S S,Tamboli M S,Deonikar V G,et al.Magnetically separable Ag3PO4/NiFe2O4 composites with enhanced photocatalytic activity[J].Dalton Transactions,2015,44(47):20426-20434.
[50] Kim H S,Kim D,Kwak B S,et al.Synthesis of magnetically separable core@shell structured NiFe2O4@TiO2 nanomaterial and its use for photocatalytic hydrogen production by methanol/water splitting[J].Chemical Engineering Journal,2014,243(4):272-279.
[51] Qin Jiayi,Huo Jingpei,Zhang Piyong,et al.Improving the photocatalytic hydrogen production of Ag/g-C3N4 nanocomposites by dye-sensitization under visible light irradiation[J].Nanoscale,2016,8(4):2249-2259.
[52] Ji Haiyan,Jing Xiaocui,Xu Yuanguo,et al.Magnetic g-C3N4/NiFe2O4 hybrids with enhanced photocatalytic activity[J].RSC Advances,2015,5(71):57960-57967.
[53] Soto-Arreola A,Huerta-Flores A M,Mora-Hernández J M,et al.Improved photocatalytic activity for water splitting over MFe2O4-ZnO(M=Cu and Ni)type-ll heterostructures[J].Journal of Photochemistry and Photobiology A:Chemistry,2018,364:433-442.
[54] 刘楠,姜妍彦,唐乃玲,等.AB2O4型尖晶石材料的制备及其在可见光下的催化氧化特性[J].硅酸盐学报,2011,39(2):290-295.
[55] Sá S,Silva H,Branda~o L,et al.Catalysts for methanol steam reforming:a view[J].Applied Catalysis B:Environmreental,2010,99(1):43-57.
[56] Yong S T,Ooi C W,Chai S P,et al.Review of methanol reforming-Cu-based catalysts,surface reaction mechanisms,and reaction schemes[J].International Journal of Hydrogen Energy,2013,38(22):9541-9552.
[57] Faungnawakij K,Shimoda N,Fukunaga T,et al.Crystal structure and surface species of CuFe2O4 spinel catalysts in steam reforming of dimethyl ether[J].Applied Catalysis B Environmental,2009,92(3):341-350.
[58] Faungnawakij K,Shimoda N,Kikuchi R,et al.Cu-based spinel catalysts CuB2O4(B=Fe,Mn,Cr,Ga,Al,Fe0.75Mn0.25)for steam reforming of dimethyl ether[J].Applied Catalysis A General,2008,341(1):139-145.
[59] Gokhale A A,Dumesic J A,Manos M.On the mechanism of low-temperature water gas shift reaction on copper[J].Journal of the American Chemical Society,2008,130(4):1402-1414.
[60] Zou Xueru,Liao Shumei,Huang Kuowei,et al.Chemistry of anilido phosphine complexes of nickel[J].Chemistry Letters,2019,48(8):811-819.
[61] 李光俊,郗宏娟,张素红,等.尖晶石CuM2O4(M=Al、Fe、Cr)催化甲醇重整反应的特性[J].燃料化学学报,2012,40(12):1466-1471.
[62] 郗宏娟,李光俊,庆绍军,等.固相法合成铜铝尖晶石催化甲醇重整反应[J].燃料化学学报,2013,41(8):998-1002.
[63] Xi Hongjuan,Hou Xiaoning,Liu Yajie,et al.Cu-Al spinel oxide as an efficient catalyst for methanol steam reforming[J].Angewandte Chemie-International Edition,2014,53(44):11886-11889.
[64] 覃发玠,刘雅杰,庆绍军,等.甲醇制氢铜铝尖晶石缓释催化剂的研究:不同铜源合成的影响[J].燃料化学学报,2017,45(12):1481-1488.
[65] Feng Gang,Ganduglia-Pirovano M V,Huo Chunfang,et al.Hydrogen spillover to copper clusters on hydroxylated γ-Al2O3[J].The Journal of Physical Chemistry C,2018,122(32):18445-18455.
[66] Shi Liu,Wang Dashan,Yu Xiaohu,et al.Adsorption of Cun(n=1~4)clusters on CuAl2O4 spinel surface:a DFT study[J].Molecular Catalalysis,2019,468:29-35.
[67] Li Li,Shi Liu,Yu Xiaohu,et al.Adsorption of Nin(n=1~4)clusters on perfect and O-defective CuAl2O4 surfaces:a DFT study[J].Chinese Chemistry Letters,2019,30(6):1147-1152.
[68] arapatkat T J.XPS-XAES study of charge transfers at Ni/Al2O3/Al systems[J].Chemical Physics Letters,1993,212(s1/s2):37-42.
[69] Liu Yajie,Qing Shaojun,Hou Xiaoning,et al.Cu-Ni-Al spinel oxide as an efficient durable catalyst for methanol steam reforming[J].Chemcatchem,2018,10(24):5698-5706.
[70] Li Li,Meng Shuai,Yu Xiaohu,et al.The effects of Fe,Co and Ni doping in CuAl2O4 spinel surface and bulk:a DFT study[J].The Journal of Physical Chemistry C,subimitted.
[71] Shi Liu,Meng Shuai,Li Li,et al.High coverage H2O adsorption on CuAl2O4 surface:a DFT study[J].Applied Surface Science,subimitted.