[1]汪文义,高 朋,宋丽红,等.带噪音预处理的改进探索性Q矩阵标定方法[J].江西师范大学学报(自然科学版),2020,(02):136-141.[doi:10.16357/j.cnki.issn1000-5862.2020.02.04]
 WANG Wenyi,GAO Peng,SONG Lihong,et al.The Improved Exploratory Method of Q-Matrix Specification with Noise Preprocessing[J].Journal of Jiangxi Normal University:Natural Science Edition,2020,(02):136-141.[doi:10.16357/j.cnki.issn1000-5862.2020.02.04]
点击复制

带噪音预处理的改进探索性Q矩阵标定方法()
分享到:

《江西师范大学学报》(自然科学版)[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2020年02期
页码:
136-141
栏目:
心理与教育测量
出版日期:
2020-04-10

文章信息/Info

Title:
The Improved Exploratory Method of Q-Matrix Specification with Noise Preprocessing
文章编号:
1000-5862(2020)02-0136-06
作者:
汪文义1高 朋1宋丽红2汪 腾1
1.江西师范大学计算机信息工程学院,江西 南昌 330022; 2.江西师范大学初等教育学院,江西 南昌 330022
Author(s):
WANG Wenyi1GAO Peng1SONG Lihong2 WANG Teng1
1.College of Computer and Information Engineering,Jiangxi Normal University,Nanchang Jiangxi 330022,China; 2.Elementary Education Collage,Jiangxi Normal University,Nanchang Jiangxi 330022,China
关键词:
认知诊断 Q矩阵 探索性因素分析方法 四分相关系数 数据预处理
Keywords:
cognitive diagnosis Q-matrix exploratory factor analysis method tetrachoric correlation correlation data preprocessing
分类号:
B 841
DOI:
10.16357/j.cnki.issn1000-5862.2020.02.04
文献标志码:
A
摘要:
考虑到在实际应用中学生在做题时的猜测和失误(统称为噪音)会影响探索性因素分析法所使用的四分相关矩阵的质量,该文提出四分相关矩阵的一种噪音修正方法,并将其应用于Q矩阵标定.模拟研究结果表明:猜测和失误这2种噪音会对Q矩阵的标定产生不利的影响; 基于修正后的四分相关矩阵的探索性因素分析法,在样本量较大和噪音较大等情况下,均能有效地提高Q矩阵标定的准确率.
Abstract:
Considering that the noises of guessing and slip that students answer problems can influence the quality of the tetrachoric correlation coefficient matrix for the exploratory factor analysis method in practical application,a noise preprocessing method of the tetrachoric correlation coefficient matrix is proposed and is used for Q-matrix specification.Simulation studies show that the noises of guessing and slip have an adverse impact on the calibration of the Q-matrix.The exploratory factor analysis method based on the modified tetrachoric correlation coefficient matrix can effectively improve the accuracy of Q-matrix specification when the sample size is relatively large and the noise is relatively high.

参考文献/References:

[1] Tatsuoka K K.Architecture of knowledge structure and cognitive diagnosis:a statistical pattern recognition and classification approach[C]∥Nichols P D,Chipman S F,Brennan R L.Cognitively diagnostic assessment.Hillsdale,NJ:Erlbaum,1995:327-361.
[2] 刘永,涂东波.认知诊断测验Q矩阵估计方法比较[J].中国考试,2015(5):53-63.
[3] 汪文义,宋丽红,丁树良.基于探索性因素分析的Q 矩阵标定方法[J].江西师范大学学报:自然科学版,2015,39(2):138-144,170.
[4] Junker B W,Sijtsma K.Cognitive assessment models with few assumptions,and connections with nonparametric item response theory[J].Applied Psychological Measurement,2001,25(3):258-272.
[5] Templin J L,Henson R A.Measurement of psychological disorders using cognitive diagnosis models[J].Psychological Methods,2006,11(3):287-305.
[6] Hartz S M.A Bayesian framework for the unified model for assessing cognitive abilities:blending theory with practicality[D].Champaign:University of Illinois at Urbana-Champaign,2002.
[7] Baker F B.Item response theory:parameter estimation techniques[M].New York:Marcel Dekker,1992:109-110.
[8] Bock R D,Gibbons R,Muraki E.Full-information item factor analysis[J].Applied Psychological Measurement,1988,12(3):261-280.
[9] Kang Chunhua.Q-matrix refinement based on item fit statistic RMSEA[J].Applied Psychological Measurement,2019,43(7):527-542.
[10] Castellan N J.On the estimation of tetrachoric correlation coefficient[J].Psychometrika,1966,31(1):67-73.
[11] Liu Jingchen,Xu Gongjun,Ying Zhiliang.Data-driven learning of Q-matrix[J].Applied Psychological Measurement,2012,36(7):548-564.
[12] de la Torre J.The generalized DINA model framework[J].Psychometrika,2011,76(2):179-199.
[13] Henson R A,Templin J L,Willse J T.Defining a family of cognitive diagnosis models using log-linear models with latent variables[J].Psychometrika,2009,74(2):191-210.
[14] von Davier M.A general diagnostic model applied to language testing data[J].British Journal of Mathematical and Statistical Psychology,2008,61(2):287-307.
[15] 丁树良, 罗芬,汪文义,等.Q矩阵标定的一种简便方法[J].江西师范大学学报:自然科学版,2018,42(2):130-133.
[16] 汪大勋,高旭亮,韩雨婷,等.一种简单有效的Q矩阵估计方法开发:基于非参数化方法视角[J].心理科学,2018,41(1):180-188.
[17] 汪大勋,高旭亮,蔡艳,等.一种非参数化的Q矩阵估计方法:ICC-IR方法开发[J].心理科学,2018,41(2):466-474.
[18] 汪文义,宋丽红,丁树良.基于可达阵的一种Q矩阵标定方法[J].心理科学,2018,41(4):968-975.
[19] Wang Wenyi,Song Lihong,Ding Shuliang,et al.An EM-based method for Q-matrix validation[J].Applied Psychological Measurement,2018,42(6):446-459.

相似文献/References:

[1]李娟,丁树良,罗芬.基于等级反应模型的广义距离判别法[J].江西师范大学学报(自然科学版),2012,(06):636.
 HU Hai,GAN Deng-wen,WANG Wen-yi,et al.The Generalized Distance Discrimination Based on Graded Response Model[J].Journal of Jiangxi Normal University:Natural Science Edition,2012,(02):636.
[2]丁树良,罗芬.由偏序关系的可达阵导出Hasse图的有效算法——兼谈其在认知诊断中的作用[J].江西师范大学学报(自然科学版),2013,(05):441.
 DING Shu-liang,LUO Fen.An Efficient Algorithm of Deriving Hasse Diagram from the Reachibility Matrix of a Partial Order Relation——Together with Its Application to Cognitive Diagnosis[J].Journal of Jiangxi Normal University:Natural Science Edition,2013,(02):441.
[3]丁树良,汪文义,罗芬.多级评分认知诊断测验蓝图的设计——根树型结构[J].江西师范大学学报(自然科学版),2014,(02):111.
 DING Shu-liang,WANG Wen-yi,LUO Fen.Design of Polytomous Cognitively Diagnostic Test Blueprint——For the Rooted Tree Type[J].Journal of Jiangxi Normal University:Natural Science Edition,2014,(02):111.
[4]丁树良,罗芬,汪文义.多级评分认知诊断测验蓝图的设计——独立型和收敛型结构[J].江西师范大学学报(自然科学版),2014,(03):265.
 DING Shu-liang,LUO Fen,WANG Wen-yi.Design of Polytomous Cognitively Diagnostic Test Blueprint---For the Independent and the Rhombus Attribute Hierarchies[J].Journal of Jiangxi Normal University:Natural Science Edition,2014,(02):265.
[5]艾国金,甘登文,丁树良,等.不定长认知诊断计算机化自适应测验终止规则研究[J].江西师范大学学报(自然科学版),2014,(05):441.
 AI Guo-jin,GAN Deng-wen,DING Shu-liang,et al.Research on Variable-Length Termination Rules for Computerized Adaptive Testing with Cognitive Diagnosis[J].Journal of Jiangxi Normal University:Natural Science Edition,2014,(02):441.
[6]祝玉芳,王黎华,丁树良,等.多策略的多级评分认知诊断方法的开发[J].江西师范大学学报(自然科学版),2015,(04):371.
 ZHU Yufang,WANG Lihua,DING Shuliang,et al.The Development of Multiple-Strategies Cognitive Diagnosis with Polytomous Response[J].Journal of Jiangxi Normal University:Natural Science Edition,2015,(02):371.
[7]艾国金,甘登文,丁树良.计算机化自适应诊断测验双重约束变长终止规则[J].江西师范大学学报(自然科学版),2015,(05):449.
 AI Guojin,GAN Dengwen,DING Shuliang.The Dual Restrictions Variable-Length Termination Rule in Cognitive Diagnosis Computerized Adaptive Testing[J].Journal of Jiangxi Normal University:Natural Science Edition,2015,(02):449.
[8]祝玉芳.GDD-P在进位计数制中的应用[J].江西师范大学学报(自然科学版),2015,(05):453.
 ZHU Yufang.An Application of the GDD-P in Carrying Notation[J].Journal of Jiangxi Normal University:Natural Science Edition,2015,(02):453.
[9]宋丽红,汪文义,丁树良.测验Q矩阵的修正方法及其比较研究[J].江西师范大学学报(自然科学版),2015,(06):623.
 SONG Lihong,WANG Wenyi,DING Shuliang.The Q-Matrix Validation Methods and Comparison to Three Existing Methods[J].Journal of Jiangxi Normal University:Natural Science Edition,2015,(02):623.
[10]武永华,杨淑群.属性蕴含Q矩阵理论的认知诊断模型[J].江西师范大学学报(自然科学版),2016,40(03):295.
 WU Yonghua,YANG Shuqun.The Cognitive Diagnosis Model of Q Matrix Theory with Attribute Implication[J].Journal of Jiangxi Normal University:Natural Science Edition,2016,40(02):295.
[11]詹沛达,丁树良,王立君.多分属性层级结构下引入逻辑约束的理想掌握模式[J].江西师范大学学报(自然科学版),2017,(03):289.
 ZHAN Peida,DING Shuliang,WANG Lijun.The Ideal Mastery Pattern for Polytomous Attributes with Hierarchical Structure Incorporating Mastery Level Restriction[J].Journal of Jiangxi Normal University:Natural Science Edition,2017,(02):289.
[12]黄 玉,罗 芬,熊建华,等.多级评分多策略认知诊断方法[J].江西师范大学学报(自然科学版),2019,(04):376.[doi:10.16357/j.cnki.issn1000-5862.2019.04.08]
 HUANG Yu,LUO Fen,XIONG Jianhua,et al.The Multiple-Strategy Cognitive Diagnosis Method with Polytomous Scoring[J].Journal of Jiangxi Normal University:Natural Science Edition,2019,(02):376.[doi:10.16357/j.cnki.issn1000-5862.2019.04.08]

备注/Memo

备注/Memo:
收稿日期:2019-04-25
基金项目:国家自然科学基金(61967009,31500909,31360237,31160203,30860084),全国教育科学规划教育部重点课题(DHA150285),江西省社会科学规划(17JY10)和江西师范大学教学改革研究(JXSDJG1848)资助项目.
作者简介:汪文义(1983-),男,湖南衡山人,副教授,博士,主要从事教育测量与信息处理的研究.E-mail:wenyiwang@jxnu.edu.cn
更新日期/Last Update: 2020-04-10