[1]袁 媛,彭 仁*.环二鸟苷酸对细菌运动调控的研究进展[J].江西师范大学学报(自然科学版),2020,(02):182-189.[doi:10.16357/j.cnki.issn1000-5862.2020.02.13]
 YUAN Yuan,PENG Ren*.The Research Progress on Regulation of Bacterial Motility by Cyclic Diguanosine Monophosphate[J].Journal of Jiangxi Normal University:Natural Science Edition,2020,(02):182-189.[doi:10.16357/j.cnki.issn1000-5862.2020.02.13]
点击复制

环二鸟苷酸对细菌运动调控的研究进展()
分享到:

《江西师范大学学报》(自然科学版)[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2020年02期
页码:
182-189
栏目:
化学与生命科学
出版日期:
2020-04-10

文章信息/Info

Title:
The Research Progress on Regulation of Bacterial Motility by Cyclic Diguanosine Monophosphate
文章编号:
1000-5862(2020)02-0182-08
作者:
袁 媛彭 仁*
江西师范大学生命科学学院,江西 南昌 330022
Author(s):
YUAN YuanPENG Ren*
College of Life of Science,Jiangxi Normal University,Nanchang Jiangxi 330022,China
关键词:
环二鸟苷酸 运动性 病原菌 信号通路
Keywords:
cyclic diguanosine monophosphate motility pathogen signaling pathway
分类号:
Q 935; Q 936
DOI:
10.16357/j.cnki.issn1000-5862.2020.02.13
文献标志码:
A
摘要:
细菌中的第二信使环二鸟苷酸(c-di-GMP)对细菌的运动性有调节作用.c-di-GMP调控鞭毛的生物合成、菌毛形成和菌毛蛋白的组成,以及其他一些与运动相关的蛋白的合成.细菌的运动性与其毒力、致病性、粘附性、趋化性、生物膜组成等密切相关.在革兰氏阴性细菌中,关于c-di-GMP的信号通路的研究较为清晰,而在革兰氏阳性细菌中,关于该信号转导通路的研究较少.此外,有关c-di-GMP的信号通路的研究主要集中在病原菌.该文主要综述了一些常见病原菌中c-di-GMP对其运动性的调控机制,为研究其他细菌c-di-GMP信号通路提供思路.
Abstract:
Cyclic diguanosine monophosphate(c-di-GMP)that is the second messenger in the bacteria regulates bacterial motility.c-di-GMP regulates flagellum biosynthesis,pili formation,pilin composition and synthesis of other motor-related proteins.The motility of bacteria is related to its physiological activities such as virulence,pathogenicity,adhesion,chemotaxis and biofilm composition.In Gram-negative bacteria,the signaling pathways of c-di-GMP are well documented.Nevertheless,few reports about the pathway in Gram-positive bacteria are available.Furthermore,the studies on the signaling pathway focus on pathogen.The mechanisms of bacterial motility regulated by c-di-GMP are summarized in the present paper,which provides examples for the study of c-di-GMP signaling pathway in other bacteria.

参考文献/References:

[1] Belas R.Biofilms,flagella,and mechanosensing of surfaces by bacteria[J].Trends in Microbiology,2014,22(9):517-527.
[2] 赵晓阳,孙伟,杨炳君,等.鞭毛和纤毛拍击研究[J].中国科技信息,2018(3/4):52-53.
[3] 徐娜娜,何静妹,汤仁仙.细菌鞭毛染色方法的改良[J].实用医技杂志,2017,24(2):218-219,241.
[4] 李交昆,南美花,吴学玲,等.细菌鞭毛在生理活动中的作用[J].生命科学,2018,30(6):673-679.
[5] 许绵,周明旭,朱国强.细菌鞭毛运动、黏附和免疫逃逸机制的研究进展[J].中国兽医学报,2017,37(2):369-375,380.
[6] 肖良,赵海丹.纤毛的研究进展[J].海军总医院学报,2006,19(1):32-35.
[7] 程寿廷,王芳芳,钱韦.鉴定cyclic di-GMP效应蛋白:高通量筛选策略与实验验证方法[J].生物工程学报,2017,33(9):1376-1389.
[8] Roelofs K G,Jones C J,Helman S R,et al.Systematic identification of cyclic-di-GMP binding proteins in Vibrio cholerae reveals a novel class of cyclic-di-GMP-binding ATPases associated with type II secretion systems[J].Plos Pathogens,2015,11(10):1-29.
[9] Düvel J,Bertinetti D,Möller S,et al.A chemical proteomics approach to identify c-di-GMP binding proteins in Pseudomonas aeruginosa[J].Journal of Microbiological Methods,2012,88(2):229-236.
[10] Li Kewei,Yang Guangjian,Debru A B,et al.SuhB regulates the motile-sessile switch in Pseudomonas aeruginosa through the Gac/Rsm pathway and c-di-GMP signaling[J].Frontiers in Microbiology,2017,8:1045.
[11] 钱韦,马旅雁,谷立川,等.Biofilm与c-di-GMP专刊序言:微生物的社会性、c-di-GMP调控及研究新技术[J].生物工程学报,2017,33(9):1351-1356.
[12] 曲道峰,沈杨,张聪聪,等.沙门氏菌CRISPR位点的结构特征比较[J].微生物学报,2018,58(2):209-218.
[13] 闫春娟,欧阳震霖,冉淦侨.鼠伤寒沙门氏菌c-di-GMP结合蛋白YcgR的表达、纯化及活性鉴定[J].微生物学通报,2018,45(4):771-779.
[14] 耿士忠,潘志明,方强,等.鼠伤寒沙门氏菌Χ4550 flhD基因缺失株的构建[J].中国兽医科学,2010,40(1):1-6.
[15] Chandrani D,Chaitanya M,Mande S S,et al.Dynamics and control of flagella assembly in Salmonella typhimurium[J].Frontiers in Cellular and Infection Microbiology,2018,8:36.
[16] Jonas K,Edwards A N,Ahmad I,et al.Complex regulatory network encompassing the Csr,c-di-GMP and motility systems of Salmonella Typhimurium[J].Environmental Microbiology,2010,12(2):524-540.
[17] Karlinsey J E,Tanaka S,Bettenworth V,et al.Completion of the hook-basal body complex of the Salmonella typhimurium flagellum is coupled to FlgM secretion and fliC transcription[J].Molecular Microbiology,2000,37(5):1220-1231.
[18] Paul K,Nieto V,Carlquist W C,et al.The c-di-GMP binding protein YcgR controls flagellar motor direction and speed to affect chemotaxis by a "Backstop Brake" Mechanism[J].Molecular Cell,2010,38(1):128-139.
[19] Fang Xin,Gomelsky M.A post-translational,c-di-GMP-dependent mechanism regulating flagellar motility[J].Molecular Microbiology,2010,76(5):1295-1305.
[20] Hou Yanjie,Li Defeng,Wang Dacheng.Crystallization and preliminary X-ray analysis of the flagellar motor 'brake' molecule YcgR with c-di-GMP from Escherichia coli[J].Acta Crystallographica Section F,2013,69(6):663-665.
[21] Branchu P,Hindré T,Fang Xin,et al.The c-di-GMP phosphodiesterase VmpA absent in Escherichia coli K12 strains affects motility and biofilm formation in the enterohemorrhagic O157:H7 serotype[J].Veterinary Immunology and Immunopathology,2013,152(1/2):132-140.
[22] Kumar B,Cardona S T.Synthetic cystic fibrosis sputum medium regulates flagellar biosynthesis through the flhF gene in Burkholderia cenocepacia[J].Frontiers in Cellular and Infection Microbiology,2016,6:65.
[23] Brijesh K,Sorensen J L,Cardona S T.A c-di-GMP-modulating protein regulates swimming Motility of Burkholderia cenocepacia in response to arginine and glutamate[J].Frontiers in Cellular and Infection Microbiology,2018,8:56.
[24] Lo Yiling,Shen Lunda,Chang C H,et al.Regulation of motility and phenazine pigment production by FliA is cyclic-di-GMP dependent in Pseudomonas aeruginosa PAO1[J].Plos One,2016,11(5):e0155397.
[25] Baker A E,Diepold A,Kuchma S L,et al.A PilZ domain protein FlgZ mediates c-di-GMP-dependent swarming motility control in Pseudomonas aeruginosa[J].Journal of Bacteriology,2016,198(13):1837-1846.
[26] Qi Yaning,Chuah M L C,Dong Xueming,et al.Binding of cyclic diguanylate in the non-catalytic EAL domain of FimX induces a long-range conformational change[J].Journal of Biological Chemistry,2011,286(4):2910-2917.
[27] Kazmierczak B I,Lebron M B,Murray T S.Analysis of FimX,a phosphodiesterase that governs twitching motility in Pseudomonas aeruginosa[J].Molecular Microbiology,2006,60(4):1026-1043.
[28] Liu Bin,Gulino M,Morse M,et al.Helical motion of the cell body enhances Caulobacter crescentus motility[J].Proceedings of the National Academy of Sciences,2014,111(31):11252-11256.
[29] Viollier P H,Shapiro L.A lytic transglycosylase homologue,PleA,is required for the assembly of pili and the flagellum at the Caulobacter crescentus cell pole[J].Molecular Microbiology,2003,49(2):331-345.
[30] Davis N J,Cohen Y,Sanselicio S,et al.De- and repolarization mechanism of flagellar morphogenesis during a bacterial cell cycle[J].Genes and Development,2013,27(18):2049-2062.
[31] Davis N J,Viollier P H.Probing flagellar promoter occupancy in wild-type and mutant Caulobacter crescentus by chromatin immunoprecipitation[J].FEMS Microbiology Letters,2011,319(2):146-152.
[32] Christen M,Christen B,Allan M G,et al.DgrA is a member of a new family of cyclic diguanosine monophosphate receptors and controls flagellar motor function in Caulobacter crescentus[J].Proceedings of the National Academy of Sciences,2007,104(10):4112-4117.
[33] Nesper J,Hug I,Kato S,et al.Cyclic di-GMP differentially tunes a bacterial flagellar motor through a novel class of CheY-like regulators[J].eLife,2017,6:e28842.
[34] Wirebrand L,Österberg S,López-Sánchez A,et al.PP4397/FlgZ provides the link between PP2258 c-di-GMP signalling and altered motility in Pseudomonas putida[J].Scientific Reports,2018,8(1):12205.
[35] Österberg S,Åberg A,Herrera S M K,et al.Genetic dissection of a motility-associated c-di-GMP signalling protein of Pseudomonas putida[J].Environmental Microbiology Reports,2013,5(4):556-565.
[36] Xiao Yujie,Nie Hailing,Liu Huizhong,et al.Expression of the diguanylate cyclase GcbA is regulated by FleQ in response to cyclic di-GMP in Pseudomonas putida KT2440[J].Environmental Microbiology Reports,2016,8(6):993-1002.
[37] Xiao Yujie,Liu Huizhong,Nie Hailing,et al.Expression of the phosphodiesterase BifA facilitating swimming motility is partly controlled by FliA in Pseudomonas putida KT2440[J].Microbiology Open,2017,6(1):e00402.
[38] Martínez-Granero F,Navazo A,Barahona E,et al.Identification of flgZ as a flagellar gene encoding a PilZ domain protein that regulates swimming motility and biofilm formation in Pseudomonas[J].Plos One,2014,9(2):e87608.
[39] Hickman J W,Harwood C S.Identification of FleQ from Pseudomonas aeruginosa as a c-di-GMP-responsive transcription factor[J].Molecular Microbiology,2008,69(2):376-389.
[40] Molina-Henares M A,Ramos-González M I,Daddaoua A,et al.FleQ of Pseudomonas putida KT2440 is a multimeric cyclic diguanylate binding protein that differentially regulates expression of biofilm matrix components[J].Research in Microbiology,2017,168(1):36-45.
[41] Nie Hailing,Xiao Yujie,Liu Huizhong,et al.FleN and FleQ play a synergistic role in regulating lapA and bcs operons in Pseudomonas putida KT2440[J].Environmental Microbiology Reports,2017,9(5):571-580.
[42] Wang Yuzhou,Li Ye,Wang Jianli,et al.FleQ regulates both the type VI secretion system and flagella in Pseudomonas putida:FleQ Regulates T6SS and Flagella[J].Biotechnology and Applied Biochemistry,2018,65(3):419-427.
[43] Khan M,Harms J S,Marim F M,et al.The bacterial second messenger cyclic di-GMP regulates Brucella pathogenesis and leads to altered host immune response[J].Infection and Immunity,2016,84(12):3458-3470.
[44] Petersen E,Chaudhuri P,Gourley C,et al.Brucella melitensis cyclic di-GMP phosphodiesterase BpdA controls expression of flagellar genes[J].Journal of Bacteriology,2011,193(20):5683-5691.
[45] Purcell E B,Mckee R W,Courson D S,et al.A nutrient-regulated cyclic diguanylate phosphodiesterase controls Clostridium difficile biofilm and toxin production during stationary phase[J].Infection and Immunity,2017,85(9):e00347-17.
[46] Purcell E B,Mckee R W,Bordeleau E,et al.Regulation of Type IV pili contributes to surface behaviors of historical and epidemic strains of Clostridium difficile[J].Journal of Bacteriology,2015,198(3):565-577.
[47] Edwards A N,Tamayo R,McBride S M.A novel regulator controls Clostridium difficile sporulation,motility and toxin production[J].Molecular Microbiology,2016,100(6):954-971.
[48] McKee R W,Mangalea M R,Purcell E B,et al.The second messenger cyclic di-GMP regulates Clostridium difficile toxin production by controlling expression of sigD[J].Journal of Bacteriology,2013,195(22):5174-5185.
[49] Tasteyre A,Barc M C,Collignon A,et al.Role of FliC and FliD flagellar proteins of Clostridium difficile in adherence and gut colonization[J].Infection and Immunity,2001,69(12):7937-7940.
[50] Bordeleau E,Purcell E B,Lafontaine D A,et al.Cyclic di-GMP riboswitch-regulated type IV pili contribute to aggregation of Clostridium difficile[J].Journal of Bacteriology,2015,197(5):819-832.
[51] Anjuwon-Foster B R,Tamayo R.A genetic switch controls the production of flagella and toxins in Clostridium difficile[J].Plos Genetics,2017,13(3):e1006701.
[52] Hendrick W A,Orr M W,Murray S R,et al.Cyclic di-GMP binding by an assembly ATPase(PilB2)and control of type IV pilin polymerization in the Gram-positive pathogen Clostridium perfringens[J].Journal of Bacteriology,2017,199(10):e00034-17.
[53] Purcell E B,McKee R W,McBride S M,et al.Cyclic diguanylate inversely regulates motility and aggregation in Clostridium difficile[J].Journal of Bacteriology,2012,194(13):3307-3316.
[54] Baban S T,Kuehne S A,Barketi-Klai A,et al.The role of flagella in Clostridium difficile pathogenesis:comparison between a non-epidemic and an epidemic strain[J].Plos One,2013,8(9):e73026.
[55] Twine S M,Reid C W,Aubry A,et al.Motility and flagellar glycosylation in Clostridium difficile[J].Journal of Bacteriology,2009,191(22):7050-7062.
[56] Fu Yang,Yu Zhaoqing,Liu Shu,et al.c-di-GMP regulates various phenotypes and insecticidal activity of Gram-positive Bacillus thuringiensis[J].Frontiers in Microbiology,2018,9:45.
[57] Shelud'ko A V,Filipécheva Y A,Telesheva E M,et al.Polar flagellum of the alphaproteobacterium Azospirillum brasilense Sp245 plays a role in biofilm biomass accumulation and in biofilm maintenance under stationary and dynamic conditions[J].World Journal of Microbiology and Biotechnology,2019,35(2):19.
[58] Girón J A,Torres A G,Freer E,et al.The flagella of enteropathogenic Escherichia coli mediate adherence to epithelial cells[J].Molecular Microbiology,2002,44(2):361-379.
[59] 丁莉莎,王瑶.鞭毛介导的运动性与细菌生物膜的相互关系[J].微生物学报,2009,49(4):417-422.
[60] Chua K L,Chan Y Y,Gan Y H.Flagella are virulence determinants of Burkholderia pseudomallei[J].Infection and Immunity,2003,71(4):1622-1629.
[61] Ichinose Y,Shimizu R,Ikeda Y,et al.Need for flagella for complete virulence of Pseudomonas syringae pv. tabaci:genetic analysis with flagella-defective mutants Δ fliC and Δ fliD in host tobacco plants[J].Journal of General Plant Pathology,2003,69(4):244-249.
[62] 匡素芳.赤红球菌定量蛋白质组学及其二鸟苷酸环化酶的融合表达和催化特性研究[D].南昌:江西师范大学,2019.

相似文献/References:

[1]黄玉珠,彭 仁*.细菌环二鸟苷酸介导的信号转导途径研究进展[J].江西师范大学学报(自然科学版),2023,(02):176.[doi:10.16357/j.cnki.issn1000.5862.2023.02.09]
 HUANG Yuzhu,PENG Ren*.The Advance in Signaling Pathway Mediated by Cyclic Diguanosine Monophosphate in Bacteria[J].Journal of Jiangxi Normal University:Natural Science Edition,2023,(02):176.[doi:10.16357/j.cnki.issn1000.5862.2023.02.09]

备注/Memo

备注/Memo:
收稿日期:2019-11-19
基金项目:国家自然科学基金(31960011,31560018)资助项目.
通信作者:彭 仁(1972-),男,江西丰城人,教授,博士,主要从事酶学和微生物生物化学研究.E-mail:renpeng @jxnu.edu.cn
更新日期/Last Update: 2020-04-10