[1]孙海杰,王 琪,陈志浩*,等.原位还原第四周期过渡金属盐催化氨硼烷水解产氢研究[J].江西师范大学学报(自然科学版),2021,(03):226-232.[doi:10.16357/j.cnki.issn1000-5862.2021.03.02]
 SUN Haijie,WANG Qi,CHEN Zhihao*,et al.The Hydrogen Production from Catalytic Hydrolysis of BH3NH3 over the Fourth Period Transition Metals of In-Situ Reduction[J].Journal of Jiangxi Normal University:Natural Science Edition,2021,(03):226-232.[doi:10.16357/j.cnki.issn1000-5862.2021.03.02]
点击复制

原位还原第四周期过渡金属盐催化氨硼烷水解产氢研究()
分享到:

《江西师范大学学报》(自然科学版)[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2021年03期
页码:
226-232
栏目:
化学
出版日期:
2021-06-10

文章信息/Info

Title:
The Hydrogen Production from Catalytic Hydrolysis of BH3NH3 over the Fourth Period Transition Metals of In-Situ Reduction
文章编号:
1000-5862(2021)03-0226-07
作者:
孙海杰1王 琪1陈志浩2*陈凌霞1秦 皓1彭智昆3*
1.郑州师范学院化学化工学院,河南 郑州 450044; 2.中国烟草总公司郑州烟草研究院,河南 郑州 450001; 3.郑州大学河南先进科学研究院,河南 郑州 450003
Author(s):
SUN Haijie1WANG Qi1CHEN Zhihao2*CHEN Lingxia1QIN Hao1PENG Zhikun3*
1.School of Chemistry and Chemical Engineering,Zhengzhou Normal University,Zhengzhou Henan 450044,China; 2.Zhengzhou Tobacco Research Institute,China National Tobacco Corporation,Zhengzhou Henan 450001,China; 3.Henan Institutes of Advanced Technology,Zhengzhou University,Zhengzhou Henan 450003,China
关键词:
氨硼烷 氢气 过渡金属
Keywords:
BH3NH3 hydrogen generation transition metals Co Ni Cu
分类号:
TM 911
DOI:
10.16357/j.cnki.issn1000-5862.2021.03.02
文献标志码:
A
摘要:
该文探究了原位还原第四周期过渡金属盐(FeCl2、CoCl2、NiCl2、CuCl2和ZnCl2)催化氨硼烷水解产氢性能,发现它们催化氨硼烷水解产氢活性由高至低依次为CuCl2>CoCl2>NiCl2>FeCl2>ZnCl2,这些盐催化氨硼烷水解产氢速率与它们及其相应金属组成电对的标准还原电极电势呈近似线性关系,这说明标准还原电势越高,相应金属盐越易被还原为金属,对应金属催化剂催化氨硼烷水解产氢的活性越高.在原位还原CuCl2、CoCl2和NiCl2催化剂中分别存在金属Cu、Co和Ni物相,催化氨硼烷水解产氢速率较快.原位还原CoCl2、NiCl2和CuCl2催化氨硼烷水解产氢的最佳搅拌速率分别为210、480和210 r·min-1,最佳用量分别为0.001 0、0.000 5和0.002 0 mol,转化频率(TOF)分别为104.9 mol H2·mol-1Co·min-1、21.6 mol H2·mol-1Ni·min-1和217.2 mol H2·mol-1Cu·min-1.动力学计算结果表明原位还原CoCl2、NiCl2和CuCl2催化氨硼烷水解产氢的活化能分别为35、65和6 kJ·mol-1.原位还原CoCl2催化剂具有磁性,易与反应液分离,且团聚不明显,循环使用性能显著优于原位还原的CuCl2.
Abstract:
The fourth period transition metal catalysts are synthesized by in-situ reduction of FeCl2,CoCl2,NiCl2,CuCl2 and ZnCl2.And the prepared catalysts are evaluated for hydrolysis of BH3NH3 towards hydrogen production.It is found that the catalytic activity over the tested transition metal catalysts is ranked as CuCl2>CoCl2>NiCl2>FeCl2>ZnCl2,which depends linearly on their corresponding standard electric potential and indicates that higher standard electric potential leads to the easier reduction of the corresponding metal salt.This further improves the catalytic activity of hydrolysis of BH3NH3 towards hydrogen production.When 0.001 0 mol CoCl2,0.000 5 mol NiCl2 and 0.002 0 mol CuCl2 are in-situ reduced and applied for the catalytic experiments,the optimum stirring rate is 210,480 and 210 rpm,respectively.And the TOF obtained over Co,Ni and Cu catalysts is 104.9 mol H2·mol-1Co·min-1,21.6 mol H2·mol-1Ni·min-1 and 217.2 mol H2·mol-1Cu·min-1,respectively.According to the kinetic calculation,the Ea over the in-situ reduced CoCl2,NiCl2 and CuCl2 is 35,65 and 6 kJ·mol-1,respectively.Furthermore,magnetic properties are detected over the in-situ reduced CoCl2 catalyst,which is easily separated from reaction environments.And no obvious aggregation is observed.More importantly,the reusability of Co catalyst is clearly superior to that observed over in-situ reduced CuCl2 catalyst.

参考文献/References:

[1] 李慧珍,王芃远,陈学年.氨硼烷:一种高性能化学储氢材料[J].科学通报,2014,59(19):1823-1837.
[2] 孙海杰,陈凌霞,张玉凤,等.钴-硼/二氧化锆催化剂催化硼氢化钠水解制氢研究[J].无机盐工业,2019,51(3):72-76.
[3] 孙海杰,陈凌霞,黄振旭,等.第四周期过渡金属催化硼氢化钠水解制氢研究[J].无机盐工业,2017,49(5):14-17.
[4] 孙海杰,黄振旭,王雅苹,等.非晶态合金Ru-B/ZrO2催化剂催化硼氢化钠水解制氢性能的研究[J].化工新型材料,2018,46(1):102-105.
[5] 张帅,王斯瑶,姜召,等.静电纺丝技术在氨硼烷水解脱氢催化剂制备中的应用[J].化工进展,2019,38(7):3194-3206.
[6] 杨晓婧,尚伟,李兰兰,等.金属催化氨硼烷制氢研究进展[J].电源技术,2014,38(7):1387-1389.
[7] 黄维,胡娜,桂田,等.沸石咪唑酯骨架结构材料Co-ZIF-9催化氨硼烷水解制氢[J].江西师范大学学报:自然科学版,2015,39(4):404-410.
[8] 徐凤勤,胡小飞,程方益,等.多孔碳负载镍纳米颗粒的制备及催化氨硼烷水解制氢[J].无机化学学报,2015,31(1):103-108.
[9] 程军,邹勇进,向翠丽,等.纳米多孔Co-Ni-B/Cu-BTC复合材料的制备及其催化水解氨硼烷的研究[J].功能材料,2016,47(6):6152-6157.
[10] 杨昆,姚淇露,卢章辉,等.快速合成廉价CuMo纳米粒子高效催化氨硼烷水解产氢[J].物理化学学报,2017,33(5):993-1000.
[11] 陈建民,卢章辉,熊丽华.Ru/Ce(OH)CO3纳米复合材料催化氨硼烷水解产氢[J].无机化学学报,2016,32(10):1816-1824.
[12] Lu Zhanghui,Li Jinping,Zhu Aaili.Catalytic hydrolysis of ammonia borane via magnetically recyclable copper iron nanoparticles for chemical hydrogen storage[J].Int J Hydrogen Energy,2013,38(13):5330-5537.
[13] Yao Qilu,Lu Zhanghui,Jia Yushuai,et al.In situ facile synthesis of Rh nanoparticles supported on carbon nanotubes as highly active catalysts for H2 generation from NH3BH3 hydrolysis[J].Int J Hydrogen Energy,2015,40(5):2207-2215.
[14] Basu S,Brockman A,Gagare P,et al.Chemical kinetics of Ru-catalyzed ammonia borane hydrolysis[J].Journal of Power Sources,2009,188(1):238-243.
[15] 孙海杰,陈秀丽,黄振旭,等.NaOH浓度对苯选择加氢制环己烯Ru-Zn催化剂性能的影响[J].化工学报,2016,67(4):1324-1332.
[16] 邵阳阳, 靳惠明,俞亮,等.Mo掺杂Co-B非晶态合金的制备及催化硼氢化钠水解制氢性能[J].材料导报,2020,34(2):2063-2066.
[17] Dong Hua,Yang Hanxi,Ai Xinping,et al.Hydrogen production from catalytic hydrolysis of sodium borohydride solution using nickel boride catalyst[J].Int J Hydrogen Energy,2003,28(10):1095-1100.
[18] Xu Qiang,Chandra M.Catalytic activities of non-noble metals for hydrogen generation from aqueous ammonia-borane at room temperature[J].J Power Sources,2006,163(1):364-370.
[19] Simagina V I,Komova O V,Ozerova A M,et al.Cobalt oxide catalyst for hydrolysis of sodium borohydride and ammonia borane[J].Applied Catalysis A:General,2011,394(1/2):86-92.
[20] Rakap M,Özkar S.Hydrogen generation from the hydrolysis of ammonia-borane using intrazeolite cobalt(0)nanoclusters catalyst[J].Int J Hydrog Energy,2010,35(8):3341-3346.
[21] Yang Lan,Luo Wei,Cheng Gongzhen.Graphene-supported Ag-based core-shell nanoparticles for hydrogen generation in hydrolysis of ammonia borane and methylamine borane[J].ACS Appl Mater Interfaces,2013,5(16):8231-8240.
[22] 杨宇雯,冯刚,卢章辉,等.原位合成钴/还原氧化石墨烯纳米粒子催化氨硼烷制氢[J].物理化学学报,2014,30(6):1180-1186.
[23] Du Yeshuang,Cao Nan,Yang Lan.One-step synthesis of magnetically recyclable rGO supported Cu@Co core-shell nanoparticles:highly efficient catalysts for hydrolytic dehydrogenation of ammonia borane and methylamine borane[J].New J Chem,2013,37(10):3035-3042.
[24] Cheng Fangyi,Ma Hua,Li Yueming.Ni1-xPtx(x=0~0.12)hollow spheres as catalysts for hydrogen generation from ammonia borane[J].Inorg Chem,2007,46(3):788-794.
[25] Feng Xiaoge,Chen Ximeng,Qiu Pengtao,et al.Copper oxide hollow spheres:synthesis and catalytic application in hydrolytic dehydrogenation of ammonia borane[J].International Journal of Hydrogen Energy,2018,43(45):20875-20881.
[26] Filiz C B,Figen K A,Pikin S.Dual combining transition metal hybrid nanoparticles for ammonia borane hydrolytic dehydrogenation[J].Applied Catalysis A:General,2018,550:320-330.
[27] 王海霞,周丽敏,陶占良,等.Cu@Co纳米颗粒合成及催化氨硼烷水解放氢性能[J].功能材料与器件学报,2015,21(4):7-12.
[28] 张以敏,姜浩锡.超临界流体沉积技术制备负载型金属催化剂的研究进展[J].化工进展,2013,32(8):1825-1831.
[29] Liu Penglong,Gu Xiaojun,Kang Kai,et al.Highly efficient catalytic hydrogen evolution from ammonia borane using the synergistic effect of crystallinity and size of noble-metal-free nanoparticles supported by porous metal-organic frameworks[J].ACS Applied Materials and Interfaces,2017,9(12):10759-10767.
[30] Bulut A,Yurderi M,Ertas I· E,et al.Carbon dispersed coppercobalt alloy nanoparticles:a cost-effective heterogeneous catalyst with exceptional performance in the hydrolytic dehydrogenation of ammonia-borane[J].Applied Catalysis B:Environmental,2016,180:121-129.
[31] Zhang Hao,Wang Xiaofeng,Chen Chengcheng,et al.Facile synthesis of Cu@CoNi core-shell nanoparticles composites for the catalytic hydrolysis of ammonia borane[J].International Journal of Hydrogen Energy,2015,40(36):12253-12261.
[32] Qiu Fangyuan,Dai Yiling,Li Li,et al.Synthesis of Cu@FeCo core-shell nanoparticles for the catalytic hydrolysis of ammonia borane[J].International Journal of Hydrogen Energy,2014,39(1):436-441.
[33] Yao Qilu,Lu Zhanghui,Yang Yuwen,et al.Facile synthesis of grapheme-supported Ni-CeOx nanocompsosites as highly efficient catalysts for hydrolytic dehydrogenation of ammonia borane[J].Nano Research,2018,11(8):4412-4422.

相似文献/References:

[1]黄维,胡娜,桂田,等.沸石咪唑酯骨架结构材料Co-ZIF-9催化氨硼烷水解制氢[J].江西师范大学学报(自然科学版),2015,(04):404.
 HUANG Wei,HU Na,GUI Tian,et al.The Hydrogen Generation from Hydrolysis of Ammonia Borane via Zeolitic Imidazolate Frameworks Co-ZIF-9[J].Journal of Jiangxi Normal University:Natural Science Edition,2015,(03):404.
[2]文久利,刘显亮,王宇慧,等.膜反应器中生物质甘油制氢反应的热力学研究[J].江西师范大学学报(自然科学版),2017,(03):229.
 WEN Jiuli,LIU Xianliang,WANG Yuhui,et al.The Thermodynamic Study on the Steam Reforming of Bio-Glycerol for Hydrogen Production with Membrane Reactor[J].Journal of Jiangxi Normal University:Natural Science Edition,2017,(03):229.

备注/Memo

备注/Memo:
收稿日期:2020-09-21
基金项目:国家自然科学基金(201908203),河南省科技攻关课题(192102210139),河南省高等学校青年骨干教师培养计划(2019GGJS252),河南省大学生创新创业训练计划(S202012949001),河南省高等学校重点科研课题(18A150018)和郑州师范学院环境催化科研创新团队基金(702010)资助项目.
作者简介:孙海杰(1982—),男,河南郑州人,副教授,博士,主要从事物理化学、催化化学研究.E-mail:sunhaijie406@163.com
通信作者:陈志浩(1986—),男,河南郑州人,高级工程师,博士,主要从事物理化学、多相催化及化学工艺方面的研究.E-mail:chenzh@ztir.com.cn
彭智昆(1988—),男,河南安阳人,讲师,博士,主要从事物理化学及多相催化研究.E-mail:pengzhikun@zzu.edu.cn
更新日期/Last Update: 2021-06-10