参考文献/References:
[1] HAMMERTON J.Named entity recognition with long short-term memory[EB/OL].[2022-04-03].http://dl.acm.org/ft_gateway.cfm?id=1119202&type=pdf.
[2] GUILLAUME L,Miguel B,SandeepS,et al.Neural architectures for named entity recognition[EB/OL].[2022-04-05].https://arxiv.org/pdf/1603.01360.pdf.
[3] HUANG Zhiheng,XU Wei,YU Kai.Bidirectional LSTM-CRF models for sequence tagging[EB/OL].[2022-04-02].https://arxiv.org/abs/1508.01991.
[4] 殷章志,李欣子,黄德根,等.融合字词模型的中文命名实体识别研究[J].中文信息学报,2019,33(11):95-100,106.
[5] 林广和,张绍武,林鸿飞.基于细粒度词表示的命名实体识别研究[J].中文信息学报,2018,32(11):62-71,78.
[6] RATHAPARKHI A.A maximum entropy part of speech tagger[EB/OL].[2022-04-06].https://www.mendeley.com/catalogue/51884aa1-bab9-3acc-8e85-51606f7087ce/.
[7] MCCALLUM A,FREITAG D,Pereira F C N.Maximum entropy Markov models for information extraction and segmentation[EB/OL].[2022-04-02].https://dl.acm.org/doi/10.5555/645529.658277.
[8] LAFFERTY J,MCCALLUM A,PEREIRA F C N.Conditional random fields:probabilistic models for segmenting and labeling sequence data[EB/OL].[2022-04-07].https://dl.acm.org/doi/10.5555/645530.655813.
[9] COLLOBERT R,WESTON J,BOTTOU L,et al.Natural language processing(almost)from scratch[J].Journal of Machine Learning Research,2011,12(1):2493-2537.
[10] CHIU J P C,NICHOLS E.Named entity recognition with bidirectional LSTM-CNNs[EB/OL].[2022-04-09].https://arxiv.org/pdf/1511.08308.pdf.
[11] NI Jian,GEORGIANA D,RADU F.Weakly supervised cross-lingual named entity recognition via effective annotation and representation projection[EB/OL].[2022-04-02].https://arxiv.org/abs/1707.02483.
[12] MAYHEW S,TSAI C T,ROTH D.Cheap translation for cross-lingual named entity recognition[EB/OL].[2022-04-05].https://aclanthology.org/D17-1268.pdf.
[13] TOOLKIT O S,Hc B,Ng M,et al.Moses:open source toolkit for statistical machine translation[EB/OL].[2022-04-02].https://dl.acm.org/doi/10.5555/1557769.1557821.
[14] CHEN Xilun,AHMED H A,HANYH,et al.Multi-source cross-lingual model transfer:learning what to share[EB/OL].[2022-04-04].https://aclanthology.org/P19-1299/.
[15] PHILLIP K,LU Yichao,VIKAS B.Adversarial learning with contextual embeddings for zero-resource cross-lingual classification and NER[EB/OL].[2022-04-02].https://arxiv.org/abs/1909.00153v3.
[16] GOODFELLOW I,POUGET-ABADIE J,MIRZA M,et al.Generative adversarial nets[EB/OL].[2022-04-02].http://de.arxiv.org/pdf/1406.2661.
[17] DAI Xiang,ADELH.An analysis of simple data augmentation for named entity recognition[EB/OL].[2022-04-04].https://arxiv.org/abs/2010.11683.
[18] CHEN Jiaao,WANG Zhenghui,TIAN Ran,et al.Local additivitybased data augmentation for semi-supervised NER[EB/OL].[2022-04-06].https://arxiv.org/abs/2010.01677.
[19] YANG Yaosheng,CHEN Wenliang,LI Zhenghua,et al.Distantly supervised NER with partial annotation learning and reinforcement learning[EB/OL].[2022-04-07].https://aclanthology.org/C18-1183.pdf.
[20] TSUBOI Y,KASHIMA H,MORI S,et al.Training conditional random fields using incomplete annotations[EB/OL].[2022-04-08].http://dl.acm.org/ft_gateway.cfm?id=1599194&type=pdf.
[21] FENG Jun,HUANG Minlie,ZHAO Li,et al.Reinforcement learning for relation classification from noisy data[EB/OL].[2022-04-04].https://arxiv.org/pdf/1808.08013.pdf.
[22] ZHANG Tao,XIA Congying,PHILIP S Y,et al.PDALN:progressive domain adaptation over a pre-trained model for low-resource cross-domain named entity recognition[EB/OL].[2022-04-04].https://aclanthology.org/2021.emnlp-main.442/.
[23] CHEN Siqi,PEI Yijie,KE Zunwang,et al.Low-resource named entity recognition via the pre-training model[J].Symmetry,2021,13(5):786.
[24] PENNINGTON J,SOCHER R,MANNING C D.Glove:global vectors for word representation[EB/OL].[2022-04-05].https://aclanthology.org/D14-1162/.
[25] JIE Zhanming,XIE Pengjun,LU Wei,et al.Better modeling of incomplete annotations for named entity recognition[EB/OL].[2022-04-02].https://www.xueshufan.com/publication/2945214158.
[26] ERIK F T,Fien D M.Introduction to the CoNLL-2003 shared task:language-independent named entity recognition[EB/OL].[2022-04-04].https://aclanthology.org/W03-0419/.
[27] LI Jiao,SUN Yueping,JOHNSON R J,et al.BioCreative V CDR task corpus:a resource for chemical disease relation extraction[EB/OL].[2022-04-02].https://pubmed.ncbi.nlm.nih.gov/27161011/.
[28] BILL Y L,LEE D H,SHEN Ming,et al.TriggerNER:learning with Entity triggers as explanations for Named Entity recognition[EB/OL].[2022-04-03].https://github.com/INK-USC/TriggerNER.
[29] ZHONG Maosheng,LIU Ganlin,XIONG Jian,et al.DualNER:atrigger based dual learning framework for low-resource Named Entity recognition[J].IEEE Intelligent Systems,2022,37(4):79-87.
相似文献/References:
[1]卢逸君,滕少华*.小样本数据生成及其在异常检测中的应用[J].江西师范大学学报(自然科学版),2020,(04):385.[doi:10.16357/j.cnki.issn1000-5862.2020.04.10]
LU Yijun,TENG Shaohua*.The Generation of Minority Sample Data and Its Application in Abnormal Detection[J].Journal of Jiangxi Normal University:Natural Science Edition,2020,(05):385.[doi:10.16357/j.cnki.issn1000-5862.2020.04.10]
[2]邓 泓,刘志超,彭莹琼*,等.基于Fibonacci采样的数据预处理方法研究[J].江西师范大学学报(自然科学版),2021,(01):60.[doi:10.16357/j.cnki.issn1000-5862.2021.01.09]
DENG Hong,LIU Zhichao,PENG Yingqiong*,et al.The Study on Data Preprocessing Method Based on Fibonacci Sampling[J].Journal of Jiangxi Normal University:Natural Science Edition,2021,(05):60.[doi:10.16357/j.cnki.issn1000-5862.2021.01.09]
[3]刘 磊,许 婕,周 勇*.基于知识增强的ERBERT-GRU中文图书分类方法研究[J].江西师范大学学报(自然科学版),2021,(03):299.[doi:10.16357/j.cnki.issn1000-5862.2021.03.12]
LIU Lei,XU Jie,ZHOU Yong*.The Study on ERBERT-GRU Chinese Book Classification Method Based on Knowledge Enhancement[J].Journal of Jiangxi Normal University:Natural Science Edition,2021,(05):299.[doi:10.16357/j.cnki.issn1000-5862.2021.03.12]
[4]杨得国,马兰萍,聂 毓.基于PCANet和SVM的病变眼底图像检测算法[J].江西师范大学学报(自然科学版),2022,(04):372.[doi:10.16357/j.cnki.issn1000-5862.2022.04.07]
YANG Deguo,MA Lanping,NIE Yu.The Detection Algorithm of Pathological Fundus Image Based on PCANet and SVM[J].Journal of Jiangxi Normal University:Natural Science Edition,2022,(05):372.[doi:10.16357/j.cnki.issn1000-5862.2022.04.07]