参考文献/References:
[1] BLEI D M,NG A Y,JORDAN M I.Latent Dirichlet allocation[J].Journal of Machine Learning Research,2003,3(4/5):993-1022.
[2] TOMAS M,ILYA S,CHEN Kai,et al.Distributed representations of words and phrases and their compositionality[EB/OL].[2013-10-16].https://arxiv.org/abs/1310.4546.
[3] PENNINGTON J,SOCHER R,MANNING C D,et al.Glove:global vectors for word representation[EB/OL].[2014-10-01].https://aclanthology.org/D14-1162/.
[4] JACOB D,CHANG Mingwei,KENTON L,et al.Bert:pre-training of deep bidirectional transformers for language understanding[EB/OL].[2018-10-11].https://arxiv.org/abs/1810.04805.
[5] 黄佳佳,李鹏伟,彭敏,等.基于深度学习的主题模型研究[J].计算机学报,2020,43(5):827-855.
[6] DAS R,ZAHEER M,DYER C,et al.Gaussian LDA for topic models with word embeddings[EB/OL].[2015-07-19].https://aclanthology.org/P15-1077.
[7] ADJI B D,FRANCISCO J R,DAVID M B.Topic modeling in embedding spaces[EB/OL].[2019-07-08].https://arxiv.org/abs/1907.04907.
[8] MIAO Yishu,YU Lei,PHIL B,et al.Neural variational inference for text processing[EB/OL].[2015-11-19].https://arxiv.org/abs/1511.06038.
[9] FENG Nan,RAN Ding,RAMESH N,et al.Topic modeling with wasserstein autoencoders[EB/OL].[2019-07-25].https://aclanthology.org/P19-1640.
[10] 夏家莉,曹中华,彭文忠,等.Skip-Gram结构和词嵌入特性的文本主题建模[J].小型微型计算机系统,2020,41(7):1400-1405.
[11] ANGELOV D.Top2vec:distributed representations of topics[EB/OL].[2020-08-20].https://arxiv.org/abs/2008.09470.
[12] QUOC V L,TOMAS M.Distributed representations of sentences and documents[EB/OL].[2014-05-17].https://arxiv.org/abs/1405.4053.
[13] GROOTENDORST M.BERTopic:neural topic modeling with a class-based TF-IDF procedure[EB/OL].[2022-03-11].https://arxiv.org/abs/2203.05794.
[14] NILS R,IRYNA G.Sentence-bert:sentence embeddings using siamese bert-networks[EB/OL].[2019-08-27].https://aclanthology.org/D19-1410.
[15] SIA S,AYUSH D,SABRINA J M.Tired of topic models?clusters of pretrained word embeddings make for fast and good topics too![EB/OL].[2020-04-30].https://aclanthology.org/2020.emnlp-main.135.
[16] GUILHERME R M,RODRIGO P,LEANDRO N C.Detecting topics in documents by clustering word vectors[EB/OL].[2019-06-22].https://link.springer.com/chapter/10.1007/978-3-030-23887-2_27.
[17] LAURE T,DAVID M.Topic modeling with contextualized word representation clusters[EB/OL].[2020-10-24].https://arxiv.org/abs/2010.12626.
[18] YU Meng,Yunyi ZHANG,HUANG Jiaxin,et al.Topic discovery via latent space clustering of pretrained language model representations[EB/OL].[2022-02-09].https://arxiv.org/abs/2202.04582.
[19] ZHANG Zihan,FANG Meng,CHEN Ling,et al.Is Neural Topic Modelling better than Clustering? An empirical study on clustering with contextual embeddings for Topics[EB/OL].[2022-04-21].https://aclanthology.org/2022.naacl-main.285.
[20] LI Bohan,ZHOU Hao,HE Junxian,et al.On the sentence embeddings from pre-trained language models[EB/OL].[2020-11-02].https://aclanthology.org/2020.emnlp-main.733.
[21] 苏剑林.提速不掉点:基于词颗粒度的中文WoBERT[EB/OL].[2020-09-18].https://www.spaces.ac.cn/archives/7758.
相似文献/References:
[1]高灵渲,张巍,霍颖翔,等.改进的聚类模式过滤推荐算法[J].江西师范大学学报(自然科学版),2012,(01):106.
GAO Ling-xuan,ZHANG Wei,HUO Ying-xiang,et al.Improved Clustering Filtering Recommendation Algorithm[J].Journal of Jiangxi Normal University:Natural Science Edition,2012,(05):106.
[2]杨雨晴,吴水秀*,左家莉.一种改进的中文词嵌入模型[J].江西师范大学学报(自然科学版),2021,(02):131.[doi:10.16357/j.cnki.issn1000-5862.2021.02.04]
YANG Yuqing,WU Shuixiu*,ZUO Jiali.The Modified Chinese Word Embeddings Model[J].Journal of Jiangxi Normal University:Natural Science Edition,2021,(05):131.[doi:10.16357/j.cnki.issn1000-5862.2021.02.04]