参考文献/References:
[1] FROLKING S,ROULET N T,MOORE T R,et al.Modeling northern peatland decomposition and peat accumulation[J].Ecosystems,2001,4(5):479-498.
[2] 李文华.中国当代生态学研究:全球变化生态学卷[M].北京:科学出版社,2013.
[3] 许芹,吴海明,陈建,等.湿地温室气体排放影响因素研究进展[J].湿地科学与管理,2013,9(3):61-64.
[4] ISE T,DUNN A L,WOFSY S C,et al.High sensitivity of peat decomposition to climate change through water-table feedback[J].Nature Geoscience,2008,1(11):763-766.
[5] TANG Huajun,QIU Jianjun,WANG Ligang,et al.Modeling soil organic carbon storage and its dynamics in croplands of China[J].Agricultural Sciences in China,2010,9(5):704-712.
[6] 张文敏,吴明,王蒙,等.杭州湾湿地不同植被类型下土壤有机碳及其组分分布特征[J].土壤学报,2014,51(6):1351-1360.
[7] 高灯州,曾从盛,章文龙,等.闽江口湿地土壤有机碳及其活性组分沿水文梯度分布特征[J].水土保持学报,2014,28(6):216-221,227.
[8] 张文菊,吴金水,童成立,等.三江平原湿地沉积有机碳密度和碳储量变异分析[J].自然资源学报,2005,20(4):537-544.
[9] 帅艳菊.湖北省主要稻作模式温室气体排放模拟研究[D].武汉:华中农业大学,2021.
[10] 王多斌,籍常婷,林慧龙.基于DNDC模型的高寒草甸土壤有机碳含量动态研究[J].草业学报,2019,28(12):197-204.
[11] 王小国,朱波,高美荣,等.川中丘陵区桤柏混交林地土壤CO2释放与Forest-DNDC模型模拟[J].北京林业大学学报,2008,30(2):27-32.
[12] 熊汉锋,陈治平,黄世宽,等.梁子湖湿地农田碳氮循环的模拟研究[J].农业环境科学学报,2006,25(增刊):533-536.
[13] CUI Jianbo,LI Changsheng,SUN Ge,et al.Linkage of MIKE SHE to Wetland-DNDC for carbon budgeting and anaerobic biogeochemistry simulation[J].Biogeochemistry,2005,72(2):147-167.
[14] 戴雪,万荣荣,杨桂山,等.鄱阳湖水文节律变化及其与江湖水量交换的关系[J].地理科学,2014,34(12):1488-1496.
[15] 刘胜,陈宇炜.退水期鄱阳湖薹草(Carex cinerascens)和藜蒿(Artemisia selengensis)洲滩湿地CO2通量变化及其影响因子[J].湖泊科学,2017,29(6):1412-1420.
[16] 巴特尔·巴克,彭镇华,张旭东,等.生物地球化学循环模型DNDC及其应用[J].土壤通报,2007,38(6):1208-1212.
[17] 王德营,姚艳敏,司海青,等.黑土有机碳变化的DNDC模拟预测[J].中国生态农业学报,2014,22(3):277-283.
[18] 朱相成,白若琦.基于DNDC模型稻田甲烷排放影响因子的敏感性分析[J].浙江农业科学,2020,61(3):577-580,583.
[19] 戴星照,胡振鹏.鄱阳湖资源与环境研究[M].北京:科学出版社,2019.
[20] 王文波,白冰,张鹏骞,等.若尔盖湿地土壤有机碳含量和密度的分布特征[J].生态学杂志,2021,40(11):3523-3530.
[21] 陈良帅,黄新亚,薛丹,等.川西高原泥炭沼泽土壤有机碳分布特征及其影响因素[J].应用与环境生物学报,2022,28(2):267-275.
[22] 陈锦盈.中国几个气候带不同生态系统土壤有机碳分解动态及其通用模型探索[D].南京:南京农业大学,2008.
[23] 章晓芳.我国东部不同气候带下土壤有机碳组分对土地利用方式的响应特征[D].北京:中国科学院大学,2020.
[24] 王瑞.模拟增温和降水变化对高寒草甸土壤和植被碳、氮的影响[D].兰州:甘肃农业大学,2016.
[25] 张威,高小红,冯玲,等.三江源区土壤有机碳空间分布及影响因素分析:以玉树县为例[J].环境科学与技术,2014,37(4):42-47.
[26] MOORE T R,BUBIER J L,BLEDZKI L.Litter decomposition in temperate peatland ecosystems:the effect of substrate and site[J].Ecosystems,2007,10(6):949-963.
[27] 张文菊,吴金水,肖和艾,等.三江平原典型湿地剖面有机碳分布特征与积累现状[J].地球科学进展,2004,19(4):558-563.
[28] 童成立,张文菊,王洪庆,等.三江平原湿地沉积物有机碳与水分的关系[J].环境科学,2005,26(6):38-42.
[29] 高俊琴,雷光春,李丽,等.若尔盖高原三种湿地土壤有机碳分布特征[J].湿地科学,2010,8(4):327-330.
[30] 田应兵,熊明彪,熊晓山,等.若尔盖高原湿地土壤-植物系统有机碳的分布与流动[J].植物生态学报,2003,27(4):490-495.
[31] 钱海燕,周杨明,谢冬明,等.鄱阳湖季节性积水湿地表层土壤碳氮高程梯度分布特征及其影响因素[J].江西农业大学学报,2021,43(5):1199-1210.
[32] 夏少霞,于秀波,刘宇,等.鄱阳湖湿地现状问题与未来趋势[J].长江流域资源与环境,2016,25(7):1103-1111.
[33] 张全军,张广帅,万松贤,等.鄱阳湖植食越冬候鸟粪便对洲滩湿地薹草枯落物分解过程及碳、氮、磷释放的影响[J].湖泊科学,2019,31(3):814-824.
[34] CHAMBERS L G,OSBORNE T Z,REDDY K R.Effect of salinity-altering pulsing events on soil organic carbon loss along an intertidal wetland gradient:a laboratory experiment[J].Biogeochemistry,2013,115(1/2/3):363-383.
[35] 谢冬明,温丽,易青,等.基于景观尺度下的鄱阳湖湿地浅层土有机碳的空间特征[J].生态科学,2020,39(1):101-109.
[36] 葛刚,赵安娜,钟义勇,等.鄱阳湖洲滩优势植物种群的分布格局[J].湿地科学,2011,9(1):19-25.
[37] LIU Yuhong,WANG Lixin,LIU Huaming,et al.Comparison of carbon sequestration ability and effect of elevation in fenced wetland plant communities of the Xilin River floodplains:a model case study[J].River Research and Application,2015,31(7):858-866.
[38] LOU Yanjing,PAN Yanwen,GAO Chuanyu,et al.Response of plant height, species richness and aboveground biomass to flooding gradient along vegetation zones in floodplain wetlands, Northeast China[J].PLoS One,2016,11(4):e0153972.
[39] 吴琴,尧波,幸瑞新,等.鄱阳湖典型湿地土壤有机碳分布及影响因子[J].生态学杂志,2012,31(2):313-318.
[40] 李雅,于秀波,刘宇,等.湿地植物功能性状对水文过程的响应研究进展[J].生态学杂志,2018,37(3):952-959.
[41] 胡佳.鄱阳湖湿地优势植物群落生物量及碳储量研究[D].南昌:江西师范大学,2018.
[42] 马雪莹.辽河三角洲滨海湿地CO2和CH4释放通量及其影响因素研究[D].青岛:青岛大学,2015.
[43] 宋长春,王毅勇.湿地生态系统土壤温度对气温的响应特征及对CO2排放的影响[J].应用生态学报,2006,17(4):625-629.
[44] 许运凯,王东启,任名成,等.芦苇植株对湿地温室气体排放的影响及其日变化特征[J].地球与环境,2018,46(3):267-273.
[45] 张丽华,宋长春,王德宣,等.沼泽湿地生态系统呼吸与温度、氮素及植物生长的相互关系[J].环境科学,2007,28(1):1-8.
[46] LANG Ying,WANG Ming,ZHANG Guangcan,et al. Experimental and simulated light responses of photosynthesis in leaves of three tree species under different soil water conditions[J].Photosynthetica,2013,51(3):370-378.