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Abstract: The fractional Pfaff-Birkhoff variational problem is studied under Caputo fractional derivative. First

the definition of Caputo fractional derivatives the formula for integration by parts and the commutative relations

between differential operation and variational operation are given. Second the fractional Pfaff-Birkhoff principle

and the fractional Birkhoff’ s equations are obtained. And finally an example is given to illustrate the application

of the results.
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0 Introduction

Fractional Calculus first appeared in the letter that
L’ Hospital wrote to Leibniz asking about the nth-deriv—
ative of a function in 1 695.If n =1/2 what would the
result will be then the fractional calculus was born.
The study about fractional calculus is first in mathemat—
ics Euler Laplace and Fourier do some works on it.
But the development of the fractional calculus is slow-
ly until 1974 the first book about fractional calculus
was published ' . In recent decades the application of
the factional calculus was used in many fields such as
physics chemistry biology electronics economics con—
trol systems and so on *7 .

There are various types about fractional deriva—
tive” s definitions including Riemann-Liouville Capu-
to Riesz Hilfer Jumarie Hadamard GriinwaldLetnik—
ov and others. But in application the Riemann-li-
ouville and Caputo definitions were mainly used. Com—
pared with Riemann-Liouville definition the Caputo
derivative was more widely used. Because the initial

conditions for fractional differentional equations with
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Caputo derivatives take on the same form as for integer—
order differential equations but it is not the same for
Riemann-Liouville derivatives and it should use frac—
tional initial conditions. On the other hand the Caputo
derivative of a constant is zero while the Riemann-Li—
ouville derivative is not.

In recent decades the development of the fractio—
nal variational problem was going well. F. Riewe **
first apply the fractional calculus in the nonconservative
mechanical system. After that the fractional variational
problem was studied by many scholars. O. P. Agra—
wal ®®  considered the simplest fractional variational
problems and Lagrange fractional variational problems
within different fractional derivatives he derived the
corresponding fractional EulerH.agrange heorems and
discussed the boundary conditions’ possibility of every
situation. Different from O. P. Agrawal’ s T. M. Ata-
nackovic **' considered a fractional variational prob—
lem which the integration’ s lower bound of the func-
tional is different from the fractional derivative” s lower

bound of the Lagrangian. A. R. El-Nabulsi "™

duced a factor then he considered a new fractional var—

intro—

iational problems which called fractional actiondike
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variational problems. Moreover S. I. Muslih and D.

Baleanu studied the fractional Eulerd.agrange equa-—
tions and fractional Hamilton equations '*** . A. B. Ma-
linowska and D. F. M. Torres studied the generalized
natural boundary conditions of the fractional variational
. G. S. F. Frederi—
co and D. F. M. Torres were the first to study the frac—

problems within Caputo derivative "

tional invariable and conserved quantity they estab—
lished the fractional Noether theorem within Riemann-—
Liouville ®  Caputo '  Riesz-Caputo * derivatives.
They also studied the Noether theorem of the noncon—
fractional action-ike

servative system under the

frame > and generalized the situation to the Lagrange
function which contains higher order derivative ** . E.
M. Rabei and his cooperators studied the fractional
Hamilton-Jacobi equations >’

These scholars did a series of work about fractio—
nal variational problems but the works just come down
to the Lagrangian system and Hamiltonian system not
including Birkhoffian system. A Birkhoffian mechanics
is a natural generalization of a Hamiltonian mechanics.
It has been gained rich fruit through one century’ s
study The dynamics of Birkhoffian system becomes one
of the hottest research directions in applied mathemat—
ics physics and dynamics but these study only come
down to integer situation not come down to fractional
situation so far.

The fractional Birkhoffian system is studied in this
paper the fractional PfaffBirkhoff variational problem
is studied within Caputo derivatives. The fractional

PfaffBirkhoff principle and fractional Birkhoff” s equa—

tions with the transversality condition are gained.
1 Preliminaries

In this section we briefly review some basic defini—
tions and properties of fractional derivatives used in the
following sections and present the commutative rela—
tions between differential operation and variational op—
eration and the formulae for fractional integration by
parts in terms of Caputo derivatives. For more on the
subject we refer the reader to literature 23 .

Let f be a continuous and integrable function in
the interval ¢, ¢, . Then the left Riemann-iouville
fractional derivative is defined as

DA = o ()] A7)

<) AT
dt . (t _ T) a-m+l T

and the right Riemann-Liouville fractional derivative is
defined as
" 1 d m by f(T)
R ) Y L C N
2](( ) F(m_a) dt jl (T_t)u—m+1 T
where I'( * ) is Gamma function « is the order of the
fractional derivative and it fulfills m -1 <a <m.
The left Caputo fractional derivative is defined as
~ L ()
CDiAL) =
fl [ﬂ ) F( m — a) " (t _ ’T) a-m+l

m-1<a<m

and the right Caputo fractional derivative is defined as

¢pa _(=n" ¢ f"()
zDsz( t) - F( )fr ( )m—m+ldT

m - T -1

m-1<a<m

If « is an integer then we have

DI =D = () A

[e% L (43 d “
DA =00 = (=g ) A
Let f and g be two smooth functions on [, 1,].
Then the formula for fractional integration by parts in
terms of Caputo derivative ' is

[Cen (5pern) de = [0 (Dreli)) dr+

1

m-1 m-1-k
- d 0 | "
Du+k m t 1
;}t 80 T . (1)

[(eto (Comn) de = [ ) (, Dre()) au +

m-1 m-1-k
m+k a+k-m d l 2
( - 1) ' t]Df ' g( t) m;{(fk) ( 2)
=0 de

The commutative relations between differential op—

B

eration and variational operation within Caputo deriva—

tives are
Cpap _ €
SI]D[f :llDlaf (3)
Cna C o
8, D.f =/D;of. (4)
Here we give a proof ** .
Let

o =flt y+dy) =1 y). (5)
Expanding f{¢ y + dy) and accurate to linear part of
dy we obtain

Sy iy =fey) + 8 Tay (o)
Substituting( 6) into( 5) we have

5f=uf((;y ) dy.

Then we have

zar= oM T ay) (7)
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Cnayr_ Cna C na —

Slezf_lezf( Ly + dY) _tlth( l Y) -

WD Ly +dy) =fle )
Using( 6) we get

0=t (M0 Ty, (8)

Hence combining( 7) and(8) we obtain the com—
mutative relation( 3) .

We can get the commutative relation( 4) in the

same way.

2 Fractional Pfaff-Birkhoff principle
and Birkhoff’ s equations within Ca-
puto derivatives

The integral
o 2
A:J_{ R:(t a) [ Dia” +
ntoo
2n
zRﬁj(ta)nga”-B(ta)}dt (9)
v=1
is called the fractional Pfaff-Birkhoff action. Where
B(t a) is Birkhoffian R*(¢ a) and R®(t a) (v =1
=+ 2n) are Birkhoff’ s functions a is Birkhoff varia—
ble. We also have p—-1<a<p g-1<B<gq(p and ¢
are integer) .
The isochronous variational principle
84 =0 (10)
with the commutative relations
GDisa” =8, Dia” [Disa” =8 Dla’(v=1 -+ 2n)
and fixed endpoint conditions
da”|,_, =8a”|,_,, =0(v=1 -+ 2n) (11)
can be called the fractional Pfaff-Birkhoff principle
within Caputo derivatives.
The fractional Birkhoff” s equations can be de-
duced from the fractional Pfaff-Birkhoff principle 7 .
Expanding the principle( 10) we have

2n
2 aC na v agC na v
oA = f{ ;(m{maa + RESED N +

SRE D" + RESCDAG") = 8B} di = 0

1. e
2n 2n

— ° aRS Cna v aRfC B v
8A = f“{; [ ; (87[]05(1 +8?5D,2a )
oB - :
Q]M £y (R‘:(Sf‘]D,“a” +Rf§,chzaV) }dt -0 (12)
v=1
Using the formulae( 1) and( 2) for integration by

parts we have

[ Ris(ipra) di = [ RitDzSa"dr =
1y n
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1 m-1 . dm—]—k( 5611/) 1
[Coa ppRode + ¥ ot R SR (13)
f k=0 - dt 0
ty c %) ¢
[ Res(fDta) de = [ REDESadr =
t t
" m-1
[ (60" iR+ Y (1)
131 k=0
hm dmflfk 8 v 2]
R (14)
de 1
Substituting( 13) and( 14) into( 12) we have
1 2n 2n aRd aRB
5A: { { (J(;Day‘i‘ichB V)_
fﬁ, ;‘1 21 PR
aB a pa Y]
o + DR +,lDfRﬂ}8a"} dt +
2n m-1 m-1-k v 1 2n m-1
> ¥ ot R T s S
v=1 k=0 di o =1 k=0
» dm—l—k v B
DR S g (15)
de 1
Let
2n m-1 m-1-k v t 2n m-1
Z z IDi+k—n1R:d mgl(?? ) 2 + Z 2( 1) m+k o
v=1 k=0 B di o =1 k=0
m-1-k v t
”D;)‘”"’”Rf d mglaff ) 2 = 0 ( 16)
di 1

Equation ( 16) is called the transversality condition.

From the condition( 16) the formula( 15) becomes

o 2
A = j {

2n
R .
s{z (00
n Vgt Voo gat !
OBy o+, DR Y6t Y i = 0.

9a” T

oR? .
a’ +—2°D" a") -
da” 2

According to the arbitrariness of the integral inter—

val ¢, t, we obtain
2n 2n
aR: IR’
Y Z(Erenra + T i)
a1 Vo1 \ et Tt da"* " ?
aB a pa
DR v, PR foa = 0. (17)

The principle ( 17) is called the fractional Pfaff-Birk—
hoff-d” Alembert principle in terms of Caputo fractional

derivative. Because of the independence of 8a* we ob—

tain
2n
oR; OR: B
( VfD;xau+ V[CD?GV)_L-F
v=1\ ga* " a7 aa"
@ pa BpB _ —
DIRS +, DPRE = 0(pw =1 =+ 2n).  (18)

Equations ( 18) are called the fractional Birkhoff’ s e—
quations satisfying transversality condition ( 16) .

Now we deduce the tranditional Birkhoff’ s equa—
tions from the fractional Birkhoff” s equations.

Let the integrand of the fractional Pfaff-Birkhoff

action ( 9) contains only left Riemann-.iouville frac—
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tional derivatives then the equations ( 18) become e (L( @) ~In ) +r1DrB(L( @)? - In a]) -0
= aR: CDa v ﬁ 2 2
oot T aat * and the transversality condition ( 16) gives
th;RZ =0(w =1 - 2n). (19) th—l(%(az)z_lnal)aaz t_
B

When a—1 the equations ( 19) become
SR, op R,

- =1 -2
21 s’ T ow A - Oe ")

3 (aRV _ﬁ)g/ _ (ﬁ +LRH) =0(w =1 - 2n).
=i\ gdt 9d” da" Ot
(20)
Equations ( 20) are the traditional Birkhoff’ s e—

quations. Now the transversality condition ( 16) is

2n
Y Ri8a’
v=1

From the endpoint condition ( 11)

Yoo (21)

B

we find that
the condition ( 21) is equal to zero. Hence the tradition—
al Birkhoff’ s equations ( 20) can be obtained from the
fractional Birkhoff” s equations ( 18) .

3 An illustrative example

In order to illustrate the above results we study a
Birkhoffian system whose Birkhoffian and Birkhoff” s
functions are

B=(a")’/2-Ind" R, =0 R,=(da’)?/2-Ind'.
Try to establish the fractional Birkhoff” s equations in
terms Caputo fractional derivative.

Without loss of generality we suppose that 0 <
a <1 0 <B <1. The fractional Pfaff Birkhoff action in

terms of Caputo derivative (9) gives

_ 2 L 2y2 1| ¢cpa 2 [L 2y2
A_J’”{ 2(a) Ina |, Dia” + 2(a)
1
ln al ngaz— ?(az)z—]n a]]}dt. (22)

The fractional Pfaff-Birkhoff-d” Alembert principle
in terms of Caputo fractional derivative ( 17) gives
(——I;I'Df*a2 - Llepeg +L1)5a1 n [—az "

a a a
D (L(az)2 —1In al) + DP (L(az)2 -
R ne\ 9
In o' ) ]5&2 =0.

According to the independence of da" (v =1 2)
we obtain the fractional Birkhoff” s equations( 18) cor—
responding to the action ( 22) as follows

1. I :

2 1C 2
- 1,D?‘a —ﬁ,Df;a +7l=0 -a +
1 )
a a a

L)

= 0.

e (%( az) - In a1)8a2

Gl

4 Conclusion

The natural world is fractional essentially using
the fractional mathematical models can overcome the
shortcomings that the theorem established by the classi—
cal mathematical models is not coincide well with the
experimental results and comparing with the nonlinear
models the physical meaning of the fractional models is
more distinct. Moreover the fractional calculus is
having the global relevance so it can reflect the histori—
cal dependent process of the systematic functions’ de—
velopment. The study of the fractional Birkhoffian sys—
tem is an advanced task there are many problems to be
solved in it. In this paper the fractional PfaffBirkhoff
principle and the Birkhoff” s equations are studied the
fractional Birkhoff” s equations are established and the
corresponding transversality condition is given in addi-
tion the integer order derivative is the special case of

this paper.
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