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Abstract: Three tightly related problems regarding the premium calculation principles are considered. Firstly

Bayesian premiums are defined by using of Bayesian approaches associated with loss principles. Then two prob-

lems regarding the robustness of premium calculation principles are investigated. One is the robustness of non—

Bayesian premiums with respect to arbitrary contaminations. The other one is the robustness of Bayesian premiums

with respect to the prior distributions by means of the g-contamination arguments. Finally the reaction of a premi—

um with respect to the contaminations and the range of premium using the Esscher principle when the contamina—

tion distribution varies in a distribution class are discussed.
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0 Introduction

A premium calculation principle aims at settling a
suitable premium associated with an insurance contract
in the sense that it provides sufficient but not excessive
compensation for the underlying claims by which losses
to the insurance company are caused. In practice an
individual premium is usually revised from time to time
in accordance with the accumulating of its claim expe—
rience up to date to reflect the true risk level of the pol-
icy-holder so as to meet the requirements of the com—
petitive insurance markets. This situation provides a
platform where the use of Bayesian methods becomes
very natural.

In fact Bayesian methodology has been used in
the insurance science widely in experiential rate mak—
ing from the later 1960s when two remarkable papers
by H. Biihlmann were published '* .In his papers
the foundations for linear credibility are established
by the least square argument. From then on much

interest has been concentrated on the applications of
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Bayesian theories to the credibility such that the theory
of credibility has been extensively developed over the
last forty years.For an introduction to credibility
theory see 3 .Recent accounts of Bayesian statistics
in actuarial science can be found in S. Klugman *

R.Kaas et al > Z.M.Landsman et al ®* U.E. Makov
et al > J.A.Nelder et al " and V.R. Young "™’

to name just a few which emphasize in particular the
Bayesian approaches to credibility. In the open liter—
ature most of the applications of Bayesian meth-
odology in principle contributed to the credibility
theory to establish the conditions under which a
Bayesian estimate/prediction can be reduced to a
credible linear combination of claim experiences.
While various premium calculation principles have
been suggested in practice and in academic context

and Bayesian methodology has been extensively
developed in statistical science there has not yet been
of Bayesian

much work on the applications

methodolegy which directly make the insurance
premiums by Bayesian approaches in premium-making

especially when dealing with the experiential rate—
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making.

One of the purposes of this article is to incor—
perate the Bayesian methods into the rate-making
practice to settle a premium when the prior distri—
bution is applicable in a pure Bayesian way. Among
all others the loss principle for premium calcula—
tions * is the one which would be best tackled
under the Bayesian framework since it adopts the
opinion of decision making. It has turned out in
statistical science that it is fruitful to incorporate
Bayesian approaches into the decision-making theory.
Motivated by this observation associated with an
arbitrary loss function we in this paper define the
corresponding Bayesian premium and explore their
properties. To be specific we in this paper define two
types of Bayesian Premiums dataHree premiums and
data-dependent premiums and develop a way which
calculates the later by means of the former.

Moreover just like in statistical practice the idea
of robustness is also of essential importance in
actuarial science. It has been studied in at latest the
later of 1980s by E. Kremer '
H. R. Kiinsch ® E.Kremer ' A.Gisler et al 7 and

E. Gomez-Déniz et. al

. Later works include

and so on. In the research
of robustness in actuarial science there are two lines
followed by many authors in the reported works.
One rooted from E.Kremer " is to study the
robustness of a premium principle on large claim size
and the other which includes most of the studies on
robustness in actuarial science focus on credible
premiums to robustmize the credible premiums when
large claims happen to the policies.

So as another topic of this paper we will also
investigate two problems regarding the robustness of
premium calculation principles. One is on the robust
problem in the traditional sense i.e. the robustness
of non-Bayesian premiums which was examined by
E.Kremer ' for the first time. The problem add-
ressed in his work is the robustness of premium
principles with respect to claims of large size. The
main idea is to contaminate the distribution which is
originally adopted to calculate the premium with a
degenerated distribution that concentrates its mass at

a given point by means of g-contamination distribu-

tion classes. This idea can be incorporated with the
ones commonly used in robustness in statistical
science to motivate us to study the robustness with
respect to arbitrary contaminations. The other issue
we will discuss is the robustness of Bayesian pre-
miums with respect to the prior distribution ( or
construction function in actuarial terminologies)

under the framework of g-contamination. Two aspects
are discussed for the later issue. One is the reaction
of the premium with respect to the contaminations.

The other examines the boundaries of the premiums
when the contamination distribution varies in a class
of unimodal distributions or class of symmetric
unimodal distributions. Particularly precise results
are derived for Esscher Premium Principles. The
previous research for this problem can be found in
E. Gomez-Déniz et al " in which the distribution is
implicitly limited to Gamma-Poisson structure. Our
contribution here is to release the Gamma-Poisson
condition so as to extend the results of E. Gomez-Déniz
et al ® to arbitrary Esscher principles.

Our main contributions in this paper include the
followings.

(i) We define two types of the Bayesian pre—
miums. One is on the data-dree basis andthe other
one is data-dependent which gives an individual
premium in accordance with his/her claim history. A
method to calculate the data-dependent premium by
means of the data{ree premium is established.

(i) For the nonBayesian premiums we derive
their reactions to the contaminative distributions
which extend the existed works. For the Bayesian
premiums the reactions to the contaminative prior
distributions are presented to reflect the robustness
of the premium with respect to the selection of prior
distributions.

(iii) We also investigate the ranges of an Ess—
cher premium under the Bayesian framework when
its contaminative prior distribution varies over a
collection of unimodal distributions or a collection of
unimodal and symetric distributions. These ranges
measure the robustness of the Bayesian Esscher
premiums in another direction.

The rest of the paper is structured as follows.
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We provide in section 2 some preliminaries including
boundaries of integral ratios and the representations
of posteriors under g-eontaminations. Bayesian pre—
miums are defined and the calculation formulae are
demonstrated in section 3.In section 4 after the
robustness of non-Bayesian premiums being examined

we deal with the robustness of Bayesian premiums by
the reaction of the Bayesian premiums with respect
to the g-contaminations of the prior distributions.

Section 5 is contributed to the discussion on the
boundaries of the Bayesian premiums with respect to
the g-contaminations of the prior distributions. The
article is concluded in section 6 with some remarks

including further interesting problems.

1 Preliminaries

Some useful preliminaries are prepared in this
section. We first address the boundaries of a ratio of
two expectations when the associated distributions
vary over the class of all distributions. After defining
the g-contamination class of distributions we give
the representations of the posteriors which are ess—
ential when discussing the boundaries of premiums
in terms of the contaminated prior distributions.
Some of the proofs for the lemmas are given for easy

reference.
1.1 Boundaries for ratios of expectations

In the first place we present a lemma on the
boundaries of a type of integral ratios which will
establish the building block for later discussion on
the robustness.

Lemma 1 Denote by D a Borel subset of the
real space R () the collection of all distributions on
D and let both f{ x) and g(x) g(x) >0 be two bo—
unded functions on D. Then

Lf(x) dF( x) )

sup( or inf) ~————— = sup( or inf)

Fe Fe(Q Lg( x) dF( x) xe xeD g( x)

Proof Since for every F' €
_ [ flx) <
[ dF () —Lg(x)g(x)dF(x) <

Sx)
) b FC
We have

[t ar(a) _ A
[elx) drz) < &)

Namely

ij( x) dF( 2) )

sup T < sup (1)
Fgg fng( x) dF( x) xggg( x)

On the other hand fixing any x € D and con-
sidering the degenerated distribution function F () =
I, (1) where [ is the indicator function it plainly

follows that

su Lﬂx)dF(x)Bsugﬂx). (2)
e arn )

The proof of the first inequality in the theorem is

thus completed by (1) and (2) . The inf part is prov—
ed similarly.
1.2 g-Contamination Class

Let ,( 8) be a fixed distribution on a measu—
rable space (@ F,).Let Q be the set of some
probability distributions on ( @ Fy) . Define

r={n(0) =(1-&)m +
q € Q} (3)
where 7,( ) is referred to as an g—contamination of
o by q.

A natural choice of Q is Q = {all distributions

n (@ F,)}suggest by P.J. Huber " .]. Berger et

al  later argued that while convenient in mathema—

eqre e 01

tics it is too large and must include many unreason—
able distributions yielding such large a class of
posterior distributions that the corresponding results
will possesse less practical values. Particularly when
m, is a unimodal distribution J. Berger et al *

suggested that () should only comprise all the un-
imodal distributions sharing the same mode with 7.

They thought that under the suggested form of Q

every 77 in () will not only retain the same function
features but also provide sufficiently many alter-
natives for the forms of e.g. the density functions

and the features of tails. And the range of the
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posterior distribution arising from the later one will
smaller than that of P.J. Huber ¥ . We will follow
this line and let
Q ={F: F is a unimodal distribution sharing the
same mode with 7} (4)
if 77, is unimodal or
Q = {F.F is a unimodal and symmetrical
distribution sharing the same mode
with 774} (5)
if 77, is symmetric and unimodal. We denote by Q,
and (), the Q defined by (4) and (5) respectively.
The following lemma provides the representa—
tions of unimodal and unimodal symmetric density
functions.
Lemma 2 (i) fis unimodal and symmetrical
with mode 6, if and only if it can be represented as
A = [l s e () d(2)
for some distribution @(z) on 0 o).
(ii) fis unimodal with mode 6, if and only if it
can be represented as

s

f( ) =af0 z[ (x)dd,(2) +

6p—z 6y

(1= [Ty (2 d0y(2)

for some distributions @,(z) and &,(z) on

0 =)
bo

anda:J'ﬂx)dxe 01
0

This lemma follows from the representations of
monotone functions see 20 .

We later need the following notations.
Q1 6,)

= {F: F is a unimodal distribution on R

with midpoint 6,}

A 1 -2
dx) =M, () s Ay
2] 2
zpz, >0 e 01 (6)

Q,,(6,) = {F:the density q( x) of F is as in (6) }
and
Q,,(6,) ={F:Fisaunimodal distribution on a
closed interval with 6, as an end
(left or right) }.
Lemma 2 indicates that ), and Q, are the hulls
of Q,, and Q,, respectively.
1.3 Representations of Posteriors under
e-Contaminations

We now turn to the representations of posteriors

under g-contaminations. For this purpose let 7,( 6)
be a distribution in I" defined by (3) and for bre-
vity we suppose that both 7,(6) and ¢(6) are
density functions. Thus under the condition that the
prior is 77,( #) the marginal distribution of x

(X, X, X,) is
m(x" | 7)) = j{}ﬂ x| 6) 7, d6
where f{ 2" | 6) is the likelihood function of X'" .

By the representation of 7 () (see (3)) we see
that
m(2" [ 7,) =(1-&) m(«" [m) +em(«'" |q).
That is the marginal distribution of X' is still of the
form of contaminations with m( x | 7,) and m(x | q)
taking the places of 7, and ¢ in equation (3)
respectively.
Furthermore let
H™) = om(x™ | ) /m(x" | )
which is obviously independent of # and relative to
sample 2" . The posterior distribution of @ is
S 1 6) ., (6)
B m( 2" | 7r,)
y(x")) amo(0127) + 4 (27) g0 1) (7)
where 7,( 6 |x'”) and ¢(6]x'") are the posterior

7 (0 ]x") = (1 -

distributions of @ with respect to priors 7,( ) and
q( 0) respectively. (7) shows that while the post-
erior possesses the same form as a contamination
distribution the contamination factor & is now repla-
ced by y(x'”) . Meanwhile the roles of 77, and ¢ in
equation (3) are played by (6 |x”) and
q(61x'") respectively.

We now present the following result regarding
the conditional distribution of X given X' which is
also essential in the discussion of robustness since it
again represents the conditional distribution of X
given X' as the contaminationike form.

Lemma 3 |If the prior distribution is an
g-contamination as defined by (3) the conditional
distribution of X given X' is

Ll 1K) = (1= () (x| 27) 4

) (x ]).
where
o(x) = em(x [g) /m(x |7) . (8)
Proof First note that the distribution of X

conditional on X'” in terms of its density function is
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Fola ) = fi(x ) /m(« ) =
f@f(x 21 6) 7.( 6) de/f@f(x“) 16) 7.(6)do (9)

where f, means the corresponding marginal/con—

ditional distributions in the case that prior is

g-contaminated. Similarly

S (2 [2) = Lﬂx | 0) o (6) dg/ m( 1"

)

Sl 1) = [ e 5 16) g(6) do/ m(« | q).

(10)
Substituting ( 3) into the numerator of the right hand

side in (9) we have

Flx[27) = (1= o) [flx 2 [0) mo(6) do +
sf(rﬂx 10 q(6)do / m(x"” | 7)

It follows immediately from( 10) that

Llx[2) = (1 = &) m(«" | o) [y (% 2y +
om(x” [ f(x ™)/ m(x? [m) =

(1 —7(x(")))fﬂo(x\x(")) +‘y(x(”))fq(x ER

The lemma is thus proved.

2 Bayesian Premiums via Decision—
Making Theory

Let X be the underlying claim of an insurance
contract for which the actuary is to make an adequate
premium denoted by H X by means of the deci—
theoretical

sion-making theory **' . Under this

framework a loss function L(x %) is selected to
measure the gap between the premium 75 charged and
the true claim x such that the suitable premium
H X for X is determined by minimizing the
expected loss £ L( X n)

E L(XHX) (11)

distribution of X can be

= mink L(X 7

In practice the .
supposed to be drawn from a family L of distributions
indexed by a parameter/parameters @ such that
different @ usually indicates different distributions.
The set @ composed by all possible values of 6 is
referred to as the parameter space. In such a setting
H X determined by (11) must be relevant to the

parameter @. In fact ( 11) should be rewritten as

ELXHX)|6 =mnE L(Xn) 6. (12

The solution to (12) is denoted by H X |6
and known in literature as the individual premium or
risk premium of X ' . The parameter 6 is generally
used to identify insured individuals and thus is
latent. Hence H X |6 can’t be used directly. How—
ever one can assume a distribution 77( ) say for 6
known as prior distribution in statistics and structure
function in actuarial convention. Under this setting
one can obtain the parameterdree marginal
distribution of X M( x| 7r) under which the solution
to (11) independent of § is denoted by H, X and
termed as the dataHree Bayesian premium. Under a
DFBP principle the differences between individuals
are erased and all policy holders are charged a same
premium.

In a majority of real practice there is a claim
experience X" (X, X, ==+ X,) available. The
individual premium is then adjusted by its claim

experience to reflect the differences among every
individual risk. Write X

period n + 1. Let the joint cumulative distribution

for the claim in the future

n+l

function of (X" ;X) conditional on @ be specified

A
by F(x, x,x,;x160) = F(«'";x|6) wherex'” =
(x, x,***x,) . Intuitively speaking X'” with a reali-

zation x'"

is the sample used to estimate the
parameters @ which in turn are used to infer the
distribution of X so as to give the individual experi-
ential premium corresponding to each individual risk
level. Substituting the conditional distribution of X,

given X" into (11) for the distribution of X we can

obtain a premium that is represented by a

measurable function of X' taking into account the

prior 77( §) and thus denoted by H_ X, ,, X n
can be easily seen that

E L(X, H, X, ;X") =

min B L( X, n(X™")) (13)

where the minimization is taken over the class of all
measurable functions n(X'”) (or nonnegative
measurable functions when a negative premium is
prohibited) . Especially it is well known that if the
loss function is L(x 1) = (x - 7)° and the min-

imization in ( 13) is taken over the class of linear

x,) ie ay+ Y akX,

then it leads to the wellknown credible premium * .

combinations of x" = (x, x, -
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The following result is obvious:
1) min, y(n) E L(X,.. X <
min, g, v £ L(X, 1)
indicating the intuition that it is always advantageous

to take use of the experiential data.

2) H, X, X = H X (X0 =
H(61X7) X, [(X"6) (14)
where H X, | X" indicates the premium
calculated by (11) at the distribution of X

conditional on X'” and H (1 xn)y Xon (X 9
is the DFBP with the distributions of X and @ being
replaced by the distributions of X,,, conditional on
(X" 9) and 6 conditional on X'" respectively.

-+ X, X,,, are independent
X = Ho o) xny X

n+l?

3) Suppose X,
given @ then H_ X
4) In addition if the prior is conjugate denoted
by w( 6 8) and X,
identically distributed given @ such that (9 | X'") =

n+l

-+ X, X,,, are independent and

a(0 8(X'")) for some measurable function
5( X)) then
Hﬂ' X/l+l;X(n) = HTr(BB(X(”)) Xn+1 .

Example 1 Bayesian Esscher Premiums. We
now discuss the wellknown Esscher principle to
show how the Bayesian premium is computed.
Suppose X, -+ X, X,,, are supposed to be inde-
pendent and identically distributed given 6.

A Esscher premium is defined by

HX|o =E XeM[o /E o
where A is a given constant for which E Xe™ |6
and E | RS [t
regarded as a loss principle under the loss function
Lixm) = (x - (15)
Thus by iterated expectation the data-free Bayesian

are both finite may be

Esscher premium is

_E XeM
- E e);X

_EHX|gE g

H, X
i EE g

. (16)

Moreover the Bayesian premium for Esscher
Principle ( or Bayesian Esscher Premium) is calcu-

lated as by equalities in ( 13)

H_ X; X" = F XeM \X( noSE M \X( n =
Ew(a\x(n)) E XeM “9 /
Eoixn) E g . (17)

Consider a contract under which the claim

follows a compound Poisson distribution as

X=3Y (18)
i=1

where N is a Poisson variable such that
Pe(N =nlg) =e’0"/n! n =01 - (19)
Moreover the claim sizes Y, are independent muat—
ually with a common distribution independent of 6
and independent of 6. Write @(A) = Ee'" and
©(A) =EY,e"". As extensively adopted in literature
such as for example J. Eichenauer et al ® S. Klug-
man * and E.GomezDéniz ® we suppose the
Poisson-Gamma distribution structure. That is 6 is
supposed to be drawn from a Gamma distribution
I'(a b) with super-parameters a > 0 and b > 0 and

density function

0™ 6 > 0. (20)

Suppose we calculate the premium by Esscher
Principle with parameter A. Simple algebraic compu-—
tation shows that

E &g = eeh-D
and
E XeM lo = 6p(A) et -1
and hence the true individual premium is
HX|g =E Xe™|g /E e |g = 6p(A).
Under the Gamma-Poisson assumptions
H. X =bp(N)/ a+1-9¢(A . (21

Suppose that the experiential data of claim
numbers in last n years is N = (N, N, === N,)
which

identically distributed as in ( 19) . Consequently the

are conditional on @ independent and

posterior distribution of @ is
7T( G‘N(n)) oc e—(u+n)09i§l]\“‘,¢+b—l -
I(a+n Y N, +b).
=
So replacing b and @ in H_ X in (21) with

a+nandb + 2 N, respectively yields
i=1

H, ;X" = (b+ YN)g(h)/ a+n+1-
i=1

o(A) . (22)
3 Robustness vs the Class of
e-Contamination Distributions

We now turn to the robustness of premium
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calculation principles in this section. The study of
the robustness of premium calculation on distri—

butions is rooted from E.Kremer “* who
investigated the robustness on large claims. We here
discussed is the framework of robustness with respect

to an g-contamination distributions family.
3.1 Robustness of Non-Bayesian Premiums

Definition 1 Suppose a premium principle H
is well-defined on the class

N, ={F(e G):F(e G) =(1-&)F+
01}

where G is a fixed distribution. The reaction of H to

eG g e

distribution G at risk X ( with distribution function

F) is defined by

Ry p(6) =lim(H (1 -e)F+e6 -HF /).
Let D be a class of distribution functions and

define r;, ,( F) = sup |R, +( G) |- Then we say that H

is robust at X with respect to the distribution class D
ifry ,(F) # .

Obviously R »( G) reduces to R, ;(y) when G
is a degenerated distribution concentrating its mass
at y. We now give the main theorems of this section.

Theorem 1 If a premium principle can be
expressed as the form £ f{ X) with f{ *) being some
specified function then R, ,(G) = H ¢ -H F .

Proof Since

HFS(C) =EF£(0) f(X) =

(L-8)E, AX) +ek; AX)

we see that

HEO =B AN,
Thatis R, ,(G) =E, AX -E.AX =HG -
H F .

This theorem says that H is robust at X with
respect to the distribution class D if and only if
zlelgH G # oo. Moreover it should be noted by
Theorem 1 that the ratio (H F (¢ -E, AX) )/ &
is independent of g. Namely the rate of the variation

of H F (G
Theorem 2

is constant when g varies.
If a premium principle is a
solution of a equation E u( X ) = C and the
orders of limits and integrals involved are intercha-
ngeable then

C-E, u(XHF)
T E, ou(X H F ) /oy

RH F( G)

where gu( X H F ) /9y is the partial derivative of

u( x y) with respect to the second variable y at x =
Xandy = H F .
Proof Obviously

Ec u(XHF) =E o u(XHF(Q ) =C
That is
E. (XHF) =(l-gE w(XHF(G ) +

eE, u(X H F.(0) )
Rearranging the terms we have
E, fXHF(G ) -E, W (XHF) =
(B u(X HF(Q ) ~E, u(X HF(6) ) ).
Using the mean—value theorem we know that
(HF(6G -HF)E, du(X & /oy =
B, WX HF(Q ) —E, u(XHF(G) ) )
where £ is a quantity between H F and H F_( G)
Dividing the two sides by gE, du( X &) /9y

and letting ¢ trend to zero we obtain

Ry +(6) =hl0n(HFg((’) _HF/é‘:
L (B (XHF(Q) —B, lXHF(G))) _
P E. au(X &) /oy -

C-E, u(XHF)
E, ou(X H F ) /oy °

The theorem is proved.

The followings are straightforward corollaries to
the above two theorems.

Corollary 1 (i) ( Expectation Principle) Given
H, X =(1+A)E X the reaction of H is

Ryw(G) =(1+A)(E; X -Ep X ).
Particularly if G is a distribution degenerated at y
(the case of large claim) then

R,w(G) =(1+A)(y-E, X ).
(ii) ( Zero-utility Principle) Given that H F is
the solution to £ u(H F - X)
of H is
R, (G) =-E, u(lHF -X /E, u(HF -
X)

Though listed in the corollary are just two of

= 0 the reaction

many premium principles we should note that the
besides ( b)

special cases of Theorems 1 and 2.

results in E. Kremer and (c) are

3.2 Robustness of Bayesian Premiums
We now proceed with the robustness of premium
principles to investigate the reaction of a Bayesian

premium to its prior distribution. In the current

circumstance the reaction is still defined as in
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Definition 1 with the places of F and G taken by
and ¢ in (3) respectively. The loss function L( x )
is supposed at this point to be unimodal and two
times differentiable. The reaction of a DDBP to its
prior is stated below.

Theorem 3 When the loss function L( x n) is
unimodal and of continuously 2-ordered derivative
the reaction of the DDBP to its prior is

Ry (@) == m( ) /m(x"

E, oL(X H, XX ) /oy

E, OL(X H, XX ) /gy

)

provided that the orders of integral operations are
interchangeable.

Proof First short f, (x|X'") f,(x[X'"”) and
fo(x|X") as f, f, and f, respectively and denote
g(x y) = 0L(x y) /9y. Obviously under the condi-
tions of the theorem H_ (X; XY and H (X; X))
are the solutions to
B, (X H, XX7) =B g(XH, XX7) =0
That is by Lemma 3 Efm g(X H, XXy =(1-
gp(x(")))Efm) g(X H, X;X(n) ) o+ €D(x(n))Ef,, g(X
H_ X, X ) . Rearranging the terms we obtain
B g(X H X X)) —E g(X H, XX7) =
o) (B, ol X H, X7 ) -

E, g(X H, X, Xy .

Using the mean-value theorem we know that
(H, ;X" —H, X;X" )E,_ og(X & /oy =
() (B, e(X H_ XX ) -

E, (X H, X;x" ) )

where £ is a quantity in between H_ X; X" and
H, X X" Dividing the two sides with ek, ag( X
&) /9y and letting £ trend to zero yields

Ry (q) =lim(H X X" -H XX /&) =
limg( ") (E, g(X H, X;X") /e-

Ef,, g( X H. X; Xt ) )/

Efm dg( X &) /a9y . (23)

By formula ( 8)

lim o x )

e—0 E

m( x( n)

= lim q) m(»

o0 m( " l,)  m(«

Besides since

limg, 2

_ 9 < yln)
S0 oy (X9 E g(X H, XX )

I dy

{‘ij»gEf‘ng g( X Hﬂg X’ X< " ) =
. (n) _
E, X H, ;X" ) =0

and

limg, g(X H, X;X") =E, gXH, Xx")
it obviously follows by considering (23) and (24)
that

Ry (q) = —m(+'" [q)/m(«" [m,)

E, oL(X H, X;X" )/ay /
E, SL(X H, X;X" ) /oy
which completes the proof.

We can also study the reaction of a DFBP to its
prior distribution. Since the proof is similar to and
simpler than the preceding one the result is listed
below without a proof.

Theorem 4 If the loss function L(x ) is
unimodal and of continuously 2-ordered derivative
the reaction of the DFBP to its prior is

E AL(X H, X )/ay

~ m(x | q)

R = - 25
Y PR TP ST S I T

provided that the orders of integral operations are
interchangeable with difference operations.

We conclude this section with an example for
which we demonstrate the reaction of the Bayes
Esscher principle to the prior.

Example 1 Reaction of the Bayesian Esscher
principle to its prior. Since by ( 15)
oL(x y) /oy = 2(y —x) e &°L(x y) /oy" = 2e™
we obtain by Theorem 4 that

R (0 E. ., oUX H, X)/dy
o) =- =
o Eyony OUX H, X)) /3y
X
E, ., (H X -X)é
AX
m(x | arg)

Recalling the relations

X X
H, X =E,., ., X /E., . ¢
Hq X = Em(x‘{[) Xe)\X /Em(x‘q) eAX
it follows by (25) that
D E’"(’»“q) e)‘X
Ryale) == "0 (B, X = H,, X ). (2)
"l(:\?"ﬂ'o) €
Similarly by Theorem3
RH 71'0( q) =
d . yin)

" E, —L(X H X;X
m(xt? ) Fn oMY e BXT)
m(x" | 7,) J’ y(n) -

0 E/770 72L(X HTrU X,X )

ay
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m(a' |g) By (Hp XX —X)et) (i) supH, X = supH, X
m( &' ) E, M "
Ty fmo sug H, X = Op H X
That is (i) inf H, X = infH, X
m( %" (]) Ef e 7ol qeQ1y
RH 770( q) == (n) . AX * lnf H X = lnf H X
m( x ‘77-0) Efm) e mpels gey 7
(H. XX —H x;x" ) (27) Proof (i) Let ¢ e Q,.By definition of H_ X
0 [l q I} .
The reactions of DDBP and DFBP for Esscher (see (16)) " "
principle are computed by (26) and (27) respe— (1-e) By Xe +ek, E Xe™|g

ctively.

4 Boundaries of Bayesian Esscher
Principles

In Bayesian statistics the robustness of an
approach is also measured among others by the
range of the statistic when the prior varies over some
selected g-contamination class * . In this section we
follow this line to study the range of the premiums
calculated by a Bayesian principle with or without a
claim data set when the prior varies over the
g-contamination class. As argued before in section
1.2 we discuss two types of contamination classes.
One is the class of unimodal distributions and the
other the class of unimodal symmetric distributions.
The analyses is demonstrated under Esscher
principle due to its convenient form of ratio of
expectations which allows for us to make use of
traditional tools to derive our results. This problem
has been studied in E. Gomez-Déniz et al ** in which
the distribution is implicitly limited to Gamma-
Poisson structure. Our results here extend those of E.
Gomez-Déniz et al "* to arbitrary Esscher principles.

R in this

section so as to avoid technical trivial details. In

For simplicity we suppose that @ =

addition we let

Iy ={m(0) =(1-¢)m(6) +eq(0):

ee 01 ¢qe@Q} i=12

where Q, and (), are defined as in (4) and (5)
respectively.

The main results are stated in theorems below.
The first two are on the DFBPs while the last two for
DDBPS.

Theorem 2 ( DFBP) The supremums and inf-

imums of a DFBP are

Hﬂ'.X = AX
¢ (l—g)E,,””O) e +eE, E e |6

We at this point denote g( ) = E( Xe*' |g) and

h(6) = E(e|p) then H_ X is expressed as
H, X =
| =By X +ea(d q(60)do

= . (28)
| =B,y e +eh(d q(6)do

In view of the representation of ¢( ) in Lemma

2 we obtain

H, X = U (1-8)E,. 5 X +eg(6)
1
0 2z
Eyo iy € +2h(0 f 5. e (6) dF(2) da) =

(=

Lo (6) 60F(2) ) (5] «

Lo (0 AF(2)d0)/ ([ (1 =) -

(1-¢) Xe™ + gg(0)

"770)

(1-¢)

Byt @ +6h(0 1, . (6)d0dF(2) )
Therefore by Lemma 1
N X
(16(? = Szl;l (f—w (1 - 8) Em(x\ﬂ—[]) Xe)‘ +

;75'(‘9) ]eo-zao+z(0)d0)/(fw (1-¢) -

-0

&
Buicta @ 43000 Lo (0)d0) =
AX € . ” .
up (18 By X 520 [ o)

1 Op-z Oy+z ( 0) dﬂ)/ (( 1 - g) Em('r mo) e)\X :

| :h( )1 4 4e (6) da) _

Thus the first equality of (i) is proved. The rest

ng X .

qe

of the theorem can be shown similarly.
For the case of unimodal prior distribution
futher results are available which is listed in the

following.
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Theorem 3 when 77, € I', then the supremum

and infimum of the Data¥ree Bayesian Premiums are

sufF)HqT X = qEQpH X and ”irelf_ZHg X =
inf H_ X .
gcOy 7

Proof It can be easily proved by taking

supremum first with respect to a the mixing factor in
representation of unimodal ¢ € Q,;( see(6) ).

The similar theorems to the two stated above are
present in the following on boundaries of a DDBP.

Theorem 4( DDBP) Suppose that X; === X, X
are independent and identically distributed condi-
tional on 6. Then

(1) the supremum of the Bayesian premiums is

su(;)H,, X x o = QpH X xt
qe

supH, X X0 = sup l,, X X . (29)

qe qe

(ii) (i) holds when sup is replaced by inf.
Proof We again denote g(6) = E Xe* |6
and h(9) = E e |6 .By the representations of

H, X X" and #w(6|X") see (17) and (7)
respectively we have

H, XX =H «, X =

E gixny E X0 JE iy E el =

((1 ‘Y(X(n)))Ewo(g\X(u)) gl +
7(X(n))Eq(9\X(n)) (6 )/ ((1-y(Xx")) -

Em(a\x(m h( 9 + 7( Xt ) Eq(e\x(n)) h(6) ).
Letting
A=(1-y(X"))E, Xe[x"

= (1-y(X"))E,, " |X"

it follows that
g( 9
h( )

_ A+ y( X(n)) E o) xm)

H, X Xt (n)
° B+7(X )Eq(a\x(n))

Clearly
Eqopn &8 = [ e(0)fx"

6)do = [ g(0) X"

Similarly

0) do/ f( X

1 6) 4( 6) da/j@ftx(") 0) d

[ () X 16) g( 6) do

Lﬂx(n)

E

h(g =

q( 0] x(n)

Consequently

, X x" = (af Ax" ) do +

0) q( 6) de)/ (BLﬂX(")

y(X) [Le(o) A X"

0) do +y(X") [ H(0) A X |6) g(0) de). (30)

Therefore analogizing (30) to (28) with g(6)
AX™ 1) and h( 6) A ‘ 0) in (30) taking the

roles of g( @) and h( 0) n (28) respectively we
obtain

n)
quH X xt —suE)A+'yX( )jog(e)f(X( | 6)

T s (0)d0722 / B + (X)) f@h( 0) (X" | 6)

iy (6) 00722 .

That i H X x" H X x
atlsqeg - Qp

qe

So we have proved the first equahty of (29).
The rest of (29) may be proved in the same way.
(2) follows from the same arguments by replacing
supremum with infimum correspondingly.

Following therem is a counterpart of Theorem 3
in the case of data-dependent premiums.

Theorem 5 When 77,

mum and inmum of a DFBP are

e I', then the supre-

sup. H, X;x" = = supH, H, X;x"
me X; xt = inf H_ X; xt”
meeln qe 3y Te
Example 3 (The Example with Gamma-Pois—

son Structure) In order to illustrate the app-
lications of the theorems we end this section with an
Esscher
Gamma-Poisson distribution assumptions defined as
n (18)
be unimodal with the same mode as 7,(6) the

20) . That is
the mode for contamination ¢( ) is 8, = (b - 1) /a

example regarding the principles with

~ (20) . The contamination is supposed to
distribution of which is prescribed by (
(b > 1 is implicitly assumed here) . It can be
regarded as a continuation to Example 1.

(1) (Data-Free Premium) Firstly similar to( 17)

we have that

ng X = E E XeM™ ‘0 /E“S E M ‘0 _
CGACEW g™ (eAC-1) /E o eAC_1) i CelCC
where G = Eﬂ_ ey (eAC-1) /E eg( eAC_1)

When (]( ) e 031(00)
G - K 9(8)‘( 1) /E e@(e’\cfl) —

c_ CAC_
(1-2¢) Eﬂo gy gEq ge <M
C_ AC_ =
(1-e)E, UELETIN ek, QA6
o eAC-1) o erco)
(1-¢)E, 6" z+gj 0"V dg
o
0(erC-1) o+ 0 eAC-1) '
(1-g)E, " z+gf e’ de

o
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Now that F_ g’ and E, ge <N
have been computed respectively the boundaries of
H_ X is thus by Theorem 3 represented as Ce**
inf¢ < H,_ X

zeR

C
< Ce

suEG which can be

numerically computed without any difficult for
specified @ b A and C.
(ii) ( Data-Dependent Premium)
to (17) we have that
E_ixn E Xe' | o

First similar

H, X, X" = =
& ! AX
E.oixn) E 716
AC o eAC-1)
Ce E_oxn) Oe A CC
E 0 erC-1) - €
a0 x(n) ©

_ B eAC-1) o eAC-1)
Where G _Eﬂ'g(ﬁ‘X(")) 06 /Eﬂ'g(e‘X(”)) e

Due to the representation formula (9)

G =B, 60 /B = (1)) -

A n
E“o(ﬁ\x(n)) ge” ey y( 2! ))

M- n
Ev(ﬁ\x(n)) 060( e )/ ((1 - 7(96( ))) :

o eAC-1) (n) o erC-1)
Em(mxw) € +y(«x )Ef,(g\x(n)) € )-(31)

For any distribution

I, ,. (6 >0

o) = ! Sl (32
_]0()+7.9(](0)/zz<0

in Q,, and the realization (x, x, *** x,) of the

historical claim numbers

N = (N, N, =+ N,)

] —nf .
T OE e () 2 >0

glolx") = . (33)
- Le_"@ﬁz %l ging, (0) 2 <O
=

z

eeﬂ( eAC-1) 066( erC-1)

E
be computed
(33) . Now that E

eAC_
Em(a\x(m eV have been calculated before

and E

correspondingly using expression
069( eAC-1)

can

q(0 | x(n) q(0 | x(n)

mo( 6 | X(n) and

when deriving (22) the boundaries of H_ X is thus
represented as

Ce** infG<H, X < Ce** sup G (34)
with G calculated by (31) ~ (33). Boundaries ( 34)

can also be numerically computed.

5 Concluding Remarks

This paper has so far studied three tightly related

problems involved in the premium calculations. One is
the Bayesian approaches used in premium calculation
principles based on the loss principle. The datadree
Bayesian premiums are defined as the premium with re—
spect to the parameterHree marginal distributions of
claims. The algorithms for data-dependent premiums
are generally developed to obtain the Bayes premiums
by means of the datadree formulae. Esscher principle
when it is understood as a loss principle is completely
demonstrated as an example to show how a Bayesian
premium is calculated.

The second one is on the robustness of Bayesian
premiums. No matter a data set is used or not the reac—
tions of the premiums to the g-contaminative distribu—
tions/priors are computed. The theory is presented in a
general context. Some existed results are pointed to be
straightforward corollaries of the results obtained here.

The last one is the boundaries of premiums in par—
ticular when the Esscher principle is used. That is we
have derived the boundaries for Esscher premiums
when the contaminative priors vary over a class of uni—
modal distributions or unimodal symmetrical distribu—
tions which are of the same mode with the contamina—
ted distribution.

The model for studying the reactions of premium
principles to the contaminative distributions are of gen—
eral features. However as for the boundaries of the pre—
miums the model is not a general one *° . So it would
be an interesting future research direction to discuss
the boundaries under general models. On the other
hand the contamination fashion adopted throughout this
paper is only g-contaminations. If other contamination
models such as the one in M. Lavine *’ among oth—
ers are adopted the corresponding conclusions are
open now. So it in the authors’ opinion indicates an—

other further interesting research topic.
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