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Abstract: Three tightly related problems regarding the premium calculation principles are considered． Firstly，
Bayesian premiums are defined by using of Bayesian approaches associated with loss principles． Then，two prob-
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Bayesian premiums with respect to arbitrary contaminations． The other one is the robustness of Bayesian premiums
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0 Introduction

A premium calculation principle aims at settling a
suitable premium associated with an insurance contract
in the sense that it provides sufficient but not excessive
compensation for the underlying claims，by which losses
to the insurance company are caused． In practice，an
individual premium is usually revised from time to time
in accordance with the accumulating of its claim expe-
rience up to date to reflect the true risk level of the pol-
icy-holder so as to meet the requirements of the com-
petitive insurance markets． This situation provides a
platform where the use of Bayesian methods becomes
very natural．

In fact，Bayesian methodology has been used in
the insurance science widely in experiential rate mak-
ing from the later 1960s when two remarkable papers
by H． Bühlmann were published［1-2］． In his papers，
the foundations for linear credibility are established
by the least square argument． From then on，much
interest has been concentrated on the applications of

Bayesian theories to the credibility such that the theory
of credibility has been extensively developed over the
last forty years． For an introduction to credibility
theory，see［3］． Ｒecent accounts of Bayesian statistics
in actuarial science can be found in S． Klugman［4］，
Ｒ． Kaas et al［5］，Z． M． Landsman et al［6-8］，U． E． Makov
et al［9］，J． A． Nelder et al［10］，and V． Ｒ． Young［11-12］，
to name just a few，which emphasize in particular the
Bayesian approaches to credibility． In the open liter-
ature，most of the applications of Bayesian meth-
odology in principle contributed to the credibility
theory to establish the conditions under which a
Bayesian estimate /prediction can be reduced to a
credible linear combination of claim experiences．
While various premium calculation principles have
been suggested in practice and in academic context，
and Bayesian methodology has been extensively
developed in statistical science，there has not yet been
much work on the applications of Bayesian
methodolegy which directly make the insurance
premiums by Bayesian approaches in premium-making，
especially when dealing with the experiential rate-



making．
One of the purposes of this article is to incor-

perate the Bayesian methods into the rate-making
practice to settle a premium when the prior distri-
bution is applicable in a pure Bayesian way． Among
all others，the loss principle for premium calcula-
tions［13］ is the one which would be best tackled
under the Bayesian framework since it adopts the
opinion of decision making． It has turned out in
statistical science that it is fruitful to incorporate
Bayesian approaches into the decision-making theory．
Motivated by this observation，associated with an
arbitrary loss function，we in this paper define the
corresponding Bayesian premium and explore their
properties． To be specific，we in this paper define two
types of Bayesian Premiums，data-free premiums and
data-dependent premiums，and develop a way which
calculates the later by means of the former．

Moreover，just like in statistical practice，the idea
of robustness is also of essential importance in
actuarial science． It has been studied in，at latest，the
later of 1980s by E． Kremer［14］． Later works include
H． Ｒ． Künsch［15］，E． Kremer［16］，A． Gisler et al［17］ and
E． Gòmez-Déniz et． al［18］，and so on． In the research
of robustness in actuarial science，there are two lines
followed by many authors in the reported works．
One，rooted from E． Kremer［14］，is to study the
robustness of a premium principle on large claim size
and the other，which includes most of the studies on
robustness in actuarial science，focus on credible
premiums to robustmize the credible premiums when
large claims happen to the policies．

So，as another topic of this paper，we will also
investigate two problems regarding the robustness of
premium calculation principles． One is on the robust
problem in the traditional sense，i． e．，the robustness
of non-Bayesian premiums，which was examined by
E． Kremer［14］ for the first time． The problem add-
ressed in his work is the robustness of premium
principles with respect to claims of large size． The
main idea is to contaminate the distribution，which is
originally adopted to calculate the premium，with a
degenerated distribution that concentrates its mass at
a given point，by means of ε-contamination distribu-

tion classes． This idea can be incorporated with the
ones commonly used in robustness in statistical
science to motivate us to study the robustness with
respect to arbitrary contaminations． The other issue
we will discuss is the robustness of Bayesian pre-
miums with respect to the prior distribution ( or
construction function，in actuarial terminologies)
under the framework of ε-contamination． Two aspects
are discussed for the later issue． One is the reaction
of the premium with respect to the contaminations．
The other examines the boundaries of the premiums
when the contamination distribution varies in a class
of unimodal distributions or class of symmetric
unimodal distributions． Particularly，precise results
are derived for Esscher Premium Principles． The
previous research for this problem can be found in
E． Gòmez-Déniz et al［18］ in which the distribution is
implicitly limited to Gamma-Poisson structure． Our
contribution here is to release the Gamma-Poisson
condition so as to extend the results of E． Gòmez-Déniz
et al［18］ to arbitrary Esscher principles．

Our main contributions in this paper include the
followings．
( i) We define two types of the Bayesian pre-

miums． One is on the data-free basis andthe other
one is data-dependent，which gives an individual
premium in accordance with his /her claim history． A
method to calculate the data-dependent premium by
means of the data-free premium is established．
( ii) For the non-Bayesian premiums，we derive

their reactions to the contaminative distributions
which extend the existed works． For the Bayesian
premiums，the reactions to the contaminative prior
distributions are presented to reflect the robustness
of the premium with respect to the selection of prior
distributions．
( iii) We also investigate the ranges of an Ess-

cher premium under the Bayesian framework when
its contaminative prior distribution varies over a
collection of unimodal distributions，or a collection of
unimodal and symetric distributions． These ranges
measure the robustness of the Bayesian Esscher
premiums in another direction．

The rest of the paper is structured as follows．
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We provide in section 2 some preliminaries including
boundaries of integral ratios and the representations
of posteriors under ε-contaminations． Bayesian pre-
miums are defined and the calculation formulae are
demonstrated in section 3． In section 4，after the
robustness of non-Bayesian premiums being examined，
we deal with the robustness of Bayesian premiums by
the reaction of the Bayesian premiums with respect
to the ε-contaminations of the prior distributions．
Section 5 is contributed to the discussion on the
boundaries of the Bayesian premiums with respect to
the ε-contaminations of the prior distributions． The
article is concluded in section 6 with some remarks
including further interesting problems．

1 Preliminaries

Some useful preliminaries are prepared in this
section． We first address the boundaries of a ratio of
two expectations when the associated distributions
vary over the class of all distributions． After defining
the ε-contamination class of distributions，we give
the representations of the posteriors，which are ess-
ential when discussing the boundaries of premiums，
in terms of the contaminated prior distributions．
Some of the proofs for the lemmas are given for easy
reference．

1． 1 Boundaries for ratios of expectations

In the first place，we present a lemma on the
boundaries of a type of integral ratios which will
establish the building block for later discussion on
the robustness．

Lemma 1 Denote by D a Borel subset of the
real space Ｒ，Q the collection of all distributions on
D，and let both f( x) and g( x) ，g( x) ＞ 0，be two bo-
unded functions on D． Then

sup
F∈Q
( or inf

F∈Q
)
∫Df( x) dF( x)
∫Dg( x) dF( x)

= sup
x∈D
( or inf

x∈D
) f( x)g( x) ．

Proof Since for every F∈ Q

∫Df( x) dF( x) = ∫D f( x)
g( x) g( x) dF( x) ≤

sup
x∈D

f( x)
g( x) ∫Dg( x) dF( x) ，

We have

∫Df( x) dF( x)
∫Dg( x) dF( x)

≤ sup
x∈D

f( x)
g( x) ．

Namely，

sup
F∈Q

∫Df( x) dF( x)
∫Dg( x) dF( x)

≤ sup
x∈D

f( x)
g( x) ． ( 1)

On the other hand，fixing any x ∈ D and con-
sidering the degenerated distribution function Fx ( t) =
I( x，%) ( t) where I is the indicator function，it plainly
follows that

sup
F∈Q

∫Df( x) dF( x)
∫Dg( x) dF( x)

≥
∫Df( x) dFx ( x)

∫Dg( x) dFx ( x)
= f( x)

g( x) ．

That is，

sup
F∈Q

∫Df( x) dF( x)
∫Dg( x) dF( x)

≥ sup
x∈D

f( x)
g( x) ． ( 2)

The proof of the first inequality in the theorem is
thus completed by ( 1) and ( 2) ． The inf part is prov-
ed similarly．

1． 2 ε-Contamination Class

Let π0 ( θ) be a fixed distribution on a measu-
rable space ( Θ，FΘ ) ． Let Q be the set of some
probability distributions on ( Θ，FΘ ) ． Define

Γ = { πε ( θ) = ( 1 － ε) π0 +
εq: ε∈［0，1］，q∈ Q} ， ( 3)

where πε ( θ) is referred to as an ε-contamination of
π0 by q．

A natural choice of Q is Q = { all distributions
on ( Θ，FΘ ) } suggest by P． J． Huber［19］． J． Berger et
al［20］ later argued that while convenient in mathema-
tics，it is too large and must include many unreason-
able distributions yielding such large a class of
posterior distributions that the corresponding results
will possesse less practical values． Particularly，when
π0 is a unimodal distribution，J． Berger et al［20］

suggested that Q should only comprise all the un-
imodal distributions sharing the same mode with π0 ．
They thought that under the suggested form of Q，
every π in Q will not only retain the same function
features but also provide sufficiently many alter-
natives for the forms of，e． g．，the density functions
and the features of tails． And the range of the
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posterior distribution arising from the later one will
smaller than that of P． J． Huber［19］． We will follow
this line and let

Q = { F: F is a unimodal distribution sharing the
same mode with π0 } ( 4)

if π0 is unimodal，or
Q = { F: F is a unimodal and symmetrical

distribution sharing the same mode
with π0 } ( 5)

if π0 is symmetric and unimodal． We denote by Q1

and Q2 the Q defined by ( 4) and ( 5) ，respectively．
The following lemma provides the representa-

tions of unimodal and unimodal symmetric density
functions．

Lemma 2 ( i) f is unimodal and symmetrical
with mode θ0 if and only if it can be represented as

f( x) = ∫
%

0

1
2z I［θ0－z，θ0+z］( x) dΦ( z)

for some distribution Φ( z) on［0，%) ．
( ii) f is unimodal with mode θ0 if and only if it

can be represented as

f( x) = α ∫
%

0

1
z I［θ0－z，θ0］( x) dΦ1 ( z) +

( 1 － α) ∫
%

0

1
z I［θ0，θ0+z］( x) dΦ2 ( z)

for some distributions Φ1( z) and Φ2( z) on ［0，∞ )

and a = ∫
θ0

0
f( x) dx∈［0，1］．

This lemma follows from the representations of
monotone functions，see［20］．

We later need the following notations．
Q1U ( θ0 ) = { F: F is a unimodal distribution on Ｒ

with midpoint θ0 } ，

q( x) = λ
z1
I［θ0－z1，θ0］( x) +

( 1 － λ)
z2

I［θ0，θ0+z2］( x) ，

z1，z2 ＞ 0，λ∈［0，1］， ( 6)
Q2U ( θ0 ) = { F: the density q( x) of F is as in ( 6) } ，
and

Q3U ( θ0 ) = { F: F is a unimodal distribution on a
closed interval with θ0 as an end
( left or right) } ．

Lemma 2 indicates that Q1 and Q2 are the hulls
of Q1U and Q2U respectively．
1． 3 Ｒepresentations of Posteriors under

ε-Contaminations
We now turn to the representations of posteriors

under ε-contaminations． For this purpose，let πε ( θ)
be a distribution in Γ defined by ( 3) and，for bre-
vity，we suppose that both π0 ( θ) and q( θ) are
density functions． Thus，under the condition that the
prior is πε ( θ) ，the marginal distribution of X ( n) =
( X1，X2…，Xn ) is

m( x ( n) πε ) = ∫Θ f( x ( n) θ) πεdθ，

where f( x ( n) θ) is the likelihood function of X ( n) ．
By the representation of πε ( θ) ( see ( 3) ) ，we see
that
m( x ( n) πε ) = ( 1 － ε) m( x ( n) π0 ) + εm( x

( n) q) ．
That is，the marginal distribution of X ( n) is still of the
form of contaminations with m( x π0 ) and m( x q)
taking the places of π0 and q in equation ( 3)
respectively．

Furthermore，let
γ( x( n) ) = εm( x ( n) q) m( x ( n) πε ) ，

which is obviously independent of θ and relative to
sample x ( n) ． The posterior distribution of θ is

πε ( θ x ( n) ) =
f( x ( n) θ) πε ( θ)
m( x ( n) πε )

= ( 1 －

γ( x( n) ) ) π0 ( θ x ( n) ) + γ( x ( n) ) q( θ x ( n) ) ( 7)
where π0 ( θ x ( n) ) and q( θ x ( n) ) are the posterior
distributions of θ with respect to priors π0 ( θ) and
q( θ) ，respectively． ( 7) shows that while the post-
erior possesses the same form as a contamination
distribution，the contamination factor ε is now repla-
ced by γ( x ( n) ) ． Meanwhile，the roles of π0 and q in
equation ( 3) are played by π0 ( θ x ( n) ) and
q( θ x ( n) ) ，respectively．

We now present the following result regarding
the conditional distribution of X given X ( n) ，which is
also essential in the discussion of robustness since it
again represents the conditional distribution of X
given X ( n) as the contamination-like form．

Lemma 3 If the prior distribution is an
ε-contamination as defined by ( 3) ，the conditional
distribution of X given X ( n) is

fε ( x x ( n) ) = ( 1 － γ( x ( n) ) ) fπ0 ( x x ( n) ) +

γ( x( n) ) fq ( x x ( n) ) ．
where

φ( x( n) ) = εm( x ( n) q) m( x ( n) πε ) ． ( 8)
Proof First note that the distribution of X

conditional on X ( n) in terms of its density function is
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fε ( x x ( n) ) = fε ( x，x
( n) ) m( x ( n) πε ) =

∫Θ f( x，x ( n) θ) πε ( θ) dθ ∫Θ f( x ( n) θ) πε ( θ) dθ，( 9)

where fε means the corresponding marginal /con-
ditional distributions in the case that prior is
ε-contaminated． Similarly，

fπ0( x x( n) ) = ∫Θf( x，x( n) θ) π0( θ) dθ m( x( n) π0) ，

fq ( x x( n) ) = ∫Θ f( x，x ( n) θ) q( θ) dθ m( x ( n) q) ．

( 10)
Substituting ( 3) into the numerator of the right hand
side in ( 9) ，we have

fε ( x x ( n) ) = ［( 1 － ε) ∫Θ f( x，x ( n) θ) π0 ( θ) dθ +

ε∫Θ f( x，x ( n) θ) q( θ) dθ］ ［m( x ( n) πε) ］．

It follows immediately from( 10) that
fε ( x x ( n) ) = ［( 1 － ε) m( x ( n) π0 ) fπ0 ( x x( n) ) +

εm( x ( n) q) fq ( x x( n) ) ］ ［m( x ( n) πε) ］ =
( 1 － γ( x ( n) ) ) fπ0 ( x x( n) ) + γ( x ( n) ) fq ( x x( n) ) ．

The lemma is thus proved．

2 Bayesian Premiums via Decision-
Making Theory

Let X be the underlying claim of an insurance
contract for which the actuary is to make an adequate
premium，denoted by H［X］，by means of the deci-
sion-making theory［13，21］． Under this theoretical
framework，a loss function L( x，η) is selected to
measure the gap between the premium η charged and
the true claim x such that the suitable premium
H［X］ for X is determined by minimizing the
expected loss E［L( X，η) ］，

E［L( X，H［X］) ］ = min
η
E［L( X，η) ］． ( 11)

In practice，the distribution of X can be
supposed to be drawn from a family L of distributions
indexed by a parameter /parameters θ such that
different θ usually indicates different distributions．
The set Θ composed by all possible values of θ is
referred to as the parameter space． In such a setting，
H［X］determined by ( 11) must be relevant to the
parameter θ． In fact，( 11) should be rewritten as

E［L( X，H［X］) θ］ = min
η
E［L( X，η) θ］． ( 12)

The solution to ( 12) is denoted by H［X θ］
and known in literature as the individual premium or
risk premium of X［18］． The parameter θ is generally
used to identify insured individuals and thus is
latent． Hence，H［X θ］can’t be used directly． How-
ever，one can assume a distribution，π( θ) ，say，for θ
known as prior distribution in statistics and structure
function in actuarial convention． Under this setting，
one can obtain the parameter-free marginal
distribution of X，M( x π) under which the solution
to ( 11) ，independent of θ，is denoted by Hπ［X］and
termed as the data-free Bayesian premium． Under a
DFBP principle，the differences between individuals
are erased and all policy holders are charged a same
premium．

In a majority of real practice there is a claim
experience X ( n) = ( X1，X2，…，Xn ) available． The
individual premium is then adjusted by its claim
experience to reflect the differences among every
individual risk． Write Xn+1 for the claim in the future
period n + 1． Let the joint cumulative distribution
function of ( X ( n) ; X) conditional on θ be specified

by F( x1，x2…xn ; x θ) =
△
F( x( n) ; x θ) where x ( n) =

( x1，x2…xn ) ． Intuitively speaking，X ( n) with a reali-
zation x ( n) is the sample used to estimate the
parameters θ，which，in turn，are used to infer the
distribution of X so as to give the individual experi-
ential premium corresponding to each individual risk
level． Substituting the conditional distribution of Xn+1

given X ( n) into ( 11) for the distribution of X，we can
obtain a premium that is represented by a
measurable function of X ( n) ，taking into account the
prior π( θ) ，and thus denoted by Hπ［Xn+1，X

( n)］． It
can be easily seen that

E［L( Xn+1，Hπ［Xn+1 ; X
( n)］) ］ =

min
η( X( n) )

E［L( Xn+1，η( X
( n) ) ) ］ ( 13)

where the minimization is taken over the class of all
measurable functions η( X ( n) ) ( or nonnegative
measurable functions when a negative premium is
prohibited) ． Especially，it is well known that if the
loss function is L( x，η) = ( x － η) 2 and the min-
imization in ( 13) is taken over the class of linear

combinations of x( n) = ( x1，x2，…，xn) i． e．，a0 +∑aiXi，

then it leads to the well-known credible premium［22］．
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The following result is obvious:
1) minη( X( n) ) E［L( Xn+1，η( X

( n) ) ］≤
minη∈Ｒ( or Ｒ +) E［L( Xn+1，η) ］

indicating the intuition that it is always advantageous
to take use of the experiential data．

2) Hπ［Xn+1 ; X
( n)］ = H［Xn+1 X ( n)］ =

Hπ ( θ X ( n) ) ［Xn+1 ( X
( n) ，θ) ］ ( 14)

where H［Xn+1 X ( n)］ indicates the premium
calculated by ( 11) at the distribution of X
conditional on X ( n) and Hπ( θ X( n) )［Xn+1 ( X

( n) ，θ) ］
is the DFBP with the distributions of X and θ being
replaced by the distributions of Xn+1 conditional on
( X ( n) ，θ) and θ conditional on X ( n) respectively．

3) Suppose X1，…，Xn，Xn+1 are independent
given θ，then Hπ［Xn+1 ; X

( n)］ = Hπ( θ X( n) )［Xn+1］．
4) In addition，if the prior is conjugate，denoted

by π( θ，δ) and X1，…，Xn，Xn+1 are independent and
identically distributed given θ，such that π( θ X( n) ) =
π( θ，δ( X ( n) ) ) for some measurable function
δ( X ( n) ) ，then

Hπ［Xn+1 ; X
( n)］ = Hπ( θ，δ( X( n) )［Xn+1］．

Example 1 Bayesian Esscher Premiums． We
now discuss the well-known Esscher principle to
show how the Bayesian premium is computed．
Suppose，X1，…，Xn，Xn+1 are supposed to be inde-
pendent and identically distributed given θ．

A Esscher premium is defined by
H［X θ］ = E［XeλX θ］ E［eλX θ］

where λ is a given constant for which E［XeλX θ］
and E［eλX θ］ are both finite［23-24］． It may be
regarded as a loss principle under the loss function

Lλ ( x，η) = ( x － η) 2eλx ． ( 15)
Thus，by iterated expectation，the data-free Bayesian

Esscher premium is

Hπ［X］ = E［XeλX］
E［eλX］

=
E［H［X θ］E［eλX θ］］

E［E［eλX θ］］
． ( 16)

Moreover，the Bayesian premium for Esscher
Principle ( or Bayesian Esscher Premium) is calcu-
lated as，by equalities in ( 13) ，

Hπ［X; X
( n)］ = E［XeλX X ( n)］ E［eλX X ( n)］ =

Eπ( θ X( n) )［E［Xe
λX θ］］

Eπ( θ X( n) )［E［e
λX θ］］． ( 17)

Consider a contract，under which the claim
follows a compound Poisson distribution as

X = ∑
N

i = 1
Yi， ( 18)

where N is a Poisson variable such that
Pr( N = n θ) = e －θθn /n! ，n = 0，1，…． ( 19)

Moreover，the claim sizes Yi are independent muat-
ually with a common distribution independent of θ
and independent of θ． Write φ( λ) = EeλY1 and
φ( λ) = EY1eλ

Y1 ． As extensively adopted in literature
such as，for example，J． Eichenauer et al［25］，S． Klug-
man［4］，and E． Gòmez-Déniz［18］，we suppose the
Poisson-Gamma distribution structure． That is，θ is
supposed to be drawn from a Gamma distribution
Γ( a，b) with super-parameters a ＞ 0 and b ＞ 0 and
density function

π( θ) = ab

Γ( b) θ
b－1e －aθ，θ ＞ 0． ( 20)

Suppose we calculate the premium by Esscher
Principle with parameter λ． Simple algebraic compu-
tation shows that

E［eλX θ］ = eθ( φ( λ) －1) ，
and

E［XeλX θ］ = θφ( λ) eθ( φ( λ) －1) ，
and hence the true individual premium is

H［X θ］ = E［XeλX θ］ E［eλX θ］ = θφ( λ) ．
Under the Gamma-Poisson assumptions，

Hπ［X］ = bφ( λ) ［a + 1 － φ( λ) ］． ( 21)
Suppose that the experiential data of claim

numbers in last n years is N( n) = ( N1，N2，…，Nn ) ，

which are，conditional on θ，independent and
identically distributed as in ( 19) ． Consequently，the
posterior distribution of θ is

π( θ N( n) ) ∝ e － ( a+n) θθ∑
n

i = 1
Ni+b－1 ～

Γ( a + n，∑
n

i = 1
Ni + b) ．

So，replacing b and a in Hπ［X］ in ( 21) with

a + n and b +∑
n

i = 1
Ni respectively，yields

Hπ［X; X
( n)］ = ( b + ∑

n

i = 1
Ni ) φ( λ) ［a + n + 1 －

φ( λ) ］． ( 22)

3 Ｒobustness vs the Class of
ε-Contamination Distributions

We now turn to the robustness of premium
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calculation principles in this section． The study of
the robustness of premium calculation on distri-
butions is rooted from E． Kremer［14，25］，who
investigated the robustness on large claims． We here
discussed is the framework of robustness with respect
to an ε-contamination distributions family．

3． 1 Ｒobustness of Non-Bayesian Premiums

Definition 1 Suppose a premium principle H
is well-defined on the class

F = { F( ε，G) : F( ε，G) = ( 1 － ε) F +
εG，ε∈［0，1］} ，

where G is a fixed distribution． The reaction of H to
distribution G at risk X ( with distribution function
F) is defined by
ＲH，F ( G) = lim

ε→0
( H［( 1 － ε) F + εG］－ H［F］ ε) ．

Let D be a class of distribution functions，and
define rH，D ( F) = sup

G∈D
ＲH，F ( G) ． Then we say that H

is robust at X with respect to the distribution class D
if rH，D ( F) ≠ %．

Obviously，ＲH，F ( G) reduces to ＲH，F ( y) when G
is a degenerated distribution concentrating its mass
at y． We now give the main theorems of this section．

Theorem 1 If a premium principle can be
expressed as the form E［f( X) ］with f(·) being some
specified function，then ＲH，F ( G) = H［G］－ H［F］．

Proof Since
H［Fε ( G) ］ = EFε( G)

［f( X) ］ =
( 1 － ε) EF［f( X) ］+ εEG［f( X) ］，

we see that
H［Fε ( G) ］－ EF［f( X) ］

ε
= EG［f( X) ］－ EF［f( X) ］．

That is ＲH，F( G) = EG［f( X) ］－ EF［f( X) ］ = H［G］－
H［F］．

This theorem says that H is robust at X with
respect to the distribution class D if and only if
sup
G∈D

H［G］≠ % ． Moreover，it should be noted by

Theorem 1 that the ratio ( H［Fε( G) ］－ EF［f( X) ］) ε
is independent of ε． Namely，the rate of the variation
of H［Fε ( G) ］ is constant when ε varies．

Theorem 2 If a premium principle is a
solution of a equation E［u( X，y) ］ = C and the
orders of limits and integrals involved are intercha-
ngeable，then

ＲH，F ( G) =
C － EG［u( X，H［F］) ］
EF［u( X，H［F］) /y］

，

where u( X，H［F］) /y is the partial derivative of
u( x，y) with respect to the second variable y at x =
X and y = H［F］．

Proof Obviously，
EF［u( X，H［F］) ］ = EFε( G)

［u( X，H［Fε ( G) ］) ］ = C．
That is

EF［u( X，H［F］) ］ = ( 1 － ε) EF［u( X，H［Fε( G) ］) ］+
εEG［u( X，H［Fε ( G) ］) ］．

Ｒearranging the terms，we have
EF［u( X，H［Fε ( G) ］) ］－ EF［u( X，H［F］) ］ =
ε( EF［u( X，H［Fε( G) ］) ］－ EG［u( X，H［Fε( G) ］) ］) ．

Using the mean-value theorem，we know that
( H［Fε ( G) ］－ H［F］) EF［u( X，ξ) /y］ =
ε( EF［u( X，H［Fε( G) ］) ］－ EG［u( X，H［Fε( G) ］) ］) ，
where ξ is a quantity between H［F］and H［Fε ( G) ］．

Dividing the two sides by εEF［u( X，ξ) /y］
and letting ε trend to zero，we obtain
ＲH，F ( G) = lim

ε→0
( H［Fε ( G) ］－ H［F］ ε =

lim
ε→0

( EF［u( X，H［Fε( G) ］)］－ EG［u( X，H［Fε( G) ］)］)
EF［u( X，ξ) /y］

=

C － EG［u( X，H［F］) ］
EF［u( X，H［F］) /y］

．

The theorem is proved．
The followings are straightforward corollaries to

the above two theorems．
Corollary 1 ( i) ( Expectation Principle) Given

Hλ［X］ = ( 1 + λ) E［X］，the reaction of H is
ＲH，F ( G) = ( 1 + λ) ( EG［X］－ EF［X］) ．

Particularly，if G is a distribution degenerated at y，
( the case of large claim) ，then

ＲH，F ( G) = ( 1 + λ) ( y － EF［X］) ．
( ii) ( Zero-utility Principle) Given that H［F］ is
the solution to E［u( H［F］－ X) ］ = 0，the reaction
of H is
ＲH，F ( G) = － EG［u( H［F］－ X) ］ EF［u'( H［F］－

X) ］．
Though listed in the corollary are just two of

many premium principles，we should note that the
results in E． Kremer［14］，besides ( b) and ( c) ，are
special cases of Theorems 1 and 2．

3． 2 Ｒobustness of Bayesian Premiums

We now proceed with the robustness of premium
principles to investigate the reaction of a Bayesian
premium to its prior distribution． In the current
circumstance，the reaction is still defined as in
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Definition 1 with the places of F and G taken by π0

and q in ( 3) respectively． The loss function L( x，η)
is supposed at this point to be unimodal and two
times differentiable． The reaction of a DDBP to its
prior is stated below．

Theorem 3 When the loss function L( x，η) is
unimodal and of continuously 2-ordered derivative，
the reaction of the DDBP to its prior is

ＲH，π0 ( q) = － m( x ( n) q) m( x ( n) π0 )·

Efq［L( X，Hπ0［X; X
( n) ］) /y］

Efπ0
［2L( X，Hπ0［X; X

( n) ］) /y2］

provided that the orders of integral operations are
interchangeable．

Proof First short fπ0 ( x X ( n) ) ，fq ( x X ( n) ) and
fε ( x X ( n) ) as fπ0，fq，and fε respectively and denote
g( x，y) = L( x，y) /y． Obviously，under the condi-
tions of the theorem，Hπ0 ( X; X

( n) ) and Hε ( X; X
( n) )

are the solutions to
Efπ0
［g( X，Hπ0［X;X

( n)］)］= Efε
［g( X，Hπε
［X;X( n)］)］= 0．

That is，by Lemma 3，Efπ0
［g( X，Hπ0［X;X

( n)］) ］ = ( 1 －

φ( x( n) ) ) Efπ0
［g( X，Hε［X;X

( n)］) ］+ φ( x( n) ) Efq［g( X，

Hε［X; X
( n)］) ］． Ｒearranging the terms，we obtain

Efπ0
［g( X，Hε［X;X

( n)］) ］－ Efπ0
［g( X，Hπ0［X;X

( n)］) ］ =

φ( x( n) ) ( Efπ0
［g( X，Hε［X; X

( n)］) ］－

Efq［g( X，Hε［X; X
( n) ］) ］) ．

Using the mean-value theorem，we know that
( Hπε
［X; X( n)］－ Hπ0［X; X

( n) ］) Efπ0
［g( X，ξ) /y］ =

φ( x( n) ) ( Efπ0
［g( X，Hπε

［X; X ( n)］) ］－

Efq［g( X，Hπε
［X; X ( n) ］) ］) ，

where ξ is a quantity in between Hπ0［X; X
( n)］ and

Hπε
［X; X( n)］． Dividing the two sides with εEfπ0

［g( X，

ξ) /y］and letting ε trend to zero yields
ＲH，π0 ( q) = lim

ε→0
( Hπε
［X; X ( n)］－ Hπ0［X; X

( n)］ ε) =

lim
ε→0

φ( x ( n) ) ［( Efπ0
［g( X，Hπε

［X; X ( n)］) ］/ε －

Efq［g( X，Hπε
［X; X ( n)］) ］) ］

Efπ0
［g( X，ξ) /y］． ( 23)

By formula ( 8)

lim
ε→0

φ( x ( n) )
ε

= lim
ε→0

m( x ( n) q)
m( x ( n) πε )

=
m( x ( n) q)
m( x( n) π0 )

． ( 24)

Besides，since

lim
ε→0

Efπ0
［
y
g( X，ξ) ］ = Efπ0

［
y
g( X，Hπ0［X; X

( n) ］) ］，

lim
ε→0

Efπ0
［g( X，Hπε

［X; X ( n)］) ］ =

Efπ0
［g( X，Hπ0［X; X

( n)］) ］ = 0

and
lim
ε→0

Efq［g( X，Hπε
［X;X( n)］) ］ = Efq［g( X，Hπ0［X;X

( n) ］) ］，

it obviously follows by considering ( 23) and ( 24)
that
ＲH，π0 ( q) = － m( x( n) q) m( x ( n) πε ) ·

Efq［L( X，Hπ0［X; X
( n) ］) /y］

Efπ0
［2L( X，Hπ0［X; X

( n) ］) /y2］，

which completes the proof．
We can also study the reaction of a DFBP to its

prior distribution． Since the proof is similar to and
simpler than the preceding one，the result is listed
below without a proof．

Theorem 4 If the loss function L( x，η) is
unimodal and of continuously 2-ordered derivative，
the reaction of the DFBP to its prior is

槇ＲH，π0 ( q) = －
Em( x q)［L( X，Hπ0［X］) /y］

Em( x π0)
［2L( X，Hπ0［X］) /y

2］
( 25)

provided that the orders of integral operations are
interchangeable with difference operations．

We conclude this section with an example for
which we demonstrate the reaction of the Bayes
Esscher principle to the prior．

Example 1 Ｒeaction of the Bayesian Esscher
principle to its prior． Since by ( 15)
L( x，y) /y = 2( y － x) eλx，2L( x，y) /y2 = 2eλx，
we obtain by Theorem 4 that

槇ＲH，π0 ( q) = －
Em( x q)［L( X，Hπ0［X］) /y］

Em( x π0)
［2L( X，Hπ0［X］) /y

2］
=

Em( x q) ［( Hπ0［X］－ X) eλX］
Em( x π0)
［eλX］

．

Ｒecalling the relations
Hπ0［X］ = Em( x π0)

［XeλX］ Em( x π0)
［eλX］，

Hq［X］ = Em( x q)［Xe
λX］ Em( x q)［e

λX］，

it follows by ( 25) that

槇ＲH，π0( q) = －
Em( x q)［e

λX］

Em( x π0)
［eλX］
( Hq［X］－ Hπ0［X］) ． ( 26)

Similarly，by Theorem3，
ＲH，π0 ( q) =

－
m( x( n) q)
m( x( n) π0 )

Efq［

y

L( X，Hπ0［X; X
( n)］) ］

Efπ0
［

2

y2
L( X，Hπ0［X; X

( n)］) ］
=
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－
m( x ( n) q)
m( x( n) π0 )

Efq［( Hπ0［X; X
( n)］－ X) eλX) ］

Efπ0
［eλX］

．

That is，

ＲH，π0 ( q) = －
m( x ( n) q)
m( x( n) π0 )

Efq［e
λX］

Efπ0
［eλX］

·

( Hπ0［X; X
( n)］－ Hq［X; X

( n) ］) ． ( 27)
The reactions of DDBP and DFBP for Esscher

principle are computed by ( 26) and ( 27) respe-
ctively．

4 Boundaries of Bayesian Esscher
Principles

In Bayesian statistics，the robustness of an
approach is also measured，among others，by the
range of the statistic when the prior varies over some
selected ε-contamination class［20］． In this section，we
follow this line to study the range of the premiums
calculated by a Bayesian principle，with or without a
claim data set，when the prior varies over the
ε-contamination class． As argued before in section
1. 2，we discuss two types of contamination classes．
One is the class of unimodal distributions and the
other the class of unimodal symmetric distributions．
The analyses is demonstrated under Esscher
principle due to its convenient form of ratio of
expectations，which allows for us to make use of
traditional tools to derive our results． This problem
has been studied in E． Gòmez-Déniz et al［18］ in which
the distribution is implicitly limited to Gamma-
Poisson structure． Our results here extend those of E．
Gòmez-Déniz et al［18］ to arbitrary Esscher principles．

For simplicity，we suppose that Θ = Ｒ in this
section so as to avoid technical trivial details． In
addition，we let

Γ i = { πε ( θ) = ( 1 － ε) π0 ( θ) + εq( θ) :
ε∈［0，1］，q∈ Qi} ，i = 1，2，

where Q1 and Q2 are defined as in ( 4) and ( 5) ，
respectively．

The main results are stated in theorems below．
The first two are on the DFBPs while the last two for
DDBPS．

Theorem 2 ( DFBP) The supremums and inf-
imums of a DFBP are

( i) sup
πε∈Γ1

Hπε
［X］ = sup

q∈Q1U
Hπε
［X］，

sup
πε∈Γ2

Hπε
［X］ = sup

q∈Q2U
Hπε
［X］．

( ii) inf
πε∈Γ1

Hπε
［X］ = inf

q∈Q1U
Hπε
［X］，

inf
πε∈Γ2

Hπε
［X］ = inf

q∈Q2U
Hπε
［X］．

Proof ( i) Let q∈ Q1． By definition of Hπε
［X］

( see ( 16) ) ，

Hπε
［X］ =
( 1 － ε) Em( x π0)

［XeλX］+ εEq［E［Xeλ
X θ］］

( 1 － ε) Em( x π0)
［eλX］+ εEq［E［eλ

X θ］］
．

We at this point denote g( θ) = E( XeλX θ) and
h( θ) = E( eλX θ) ，then Hπε

［X］ is expressed as
Hπε
［X］ =

∫
%

－%
［( 1 － ε) Em( x π0)

［XeλX］+ εg( θ) ］q( θ) dθ

∫
%

－%
［( 1 － ε) Em( x π0)

［eλX］+ εh( θ) ］q( θ) dθ
． ( 28)

In view of the representation of q( θ) in Lemma
2，we obtain

Hπε
［X］ (= ∫

%

－%
［( 1 － ε) Em( x π0)

［XeλX］+ εg( θ) ］·

∫
%

0

1
2z I［θ0－z，θ0+z］( θ) dF( z) d ) (θ ∫

%

－%
［( 1 － ε) ·

Em( x π0)
［eλX］+ εh( θ) ］∫

%

0

1
2z I［θ0－z，θ0+z］( θ) dF( z) d )θ

(
=

∫
%

0

1
2z ∫

%

－%
［( 1 － ε) Em( x π0)

［XeλX］+ εg( θ) ］·

I［θ0－z，θ0+z］( θ) dθdF( z ) () ∫
%

0

1
2z ∫

%

－%
［( 1 － ε)·

Em( x π0)
［eλX］+ εh( θ) ］I［θ0－z，θ0+z］( θ) dθdF( z )) ．

Therefore，by Lemma 1，

sup
q∈Q1

Hπε
［X］ = sup

z ＞ (0 ∫
%

－%
［( 1 － ε) Em( x π0)

［XeλX］ +

ε
2zg( θ) ］I［θ0－z，θ0+z］( θ) d ) (θ ∫

%

－%
［( 1 － ε) ·

Em( x π0)
［eλX］+ ε

2zh( θ) ］I［θ0－z，θ0+z］( θ) d )θ =

sup
z ＞ (0
( 1 － ε) Em( x π0)

［XeλX］+ ε
2z·∫

%

－%
g( θ) ·

I［θ0－z，θ0+z］( θ) d ) (θ ( 1 － ε) Em( x π0)
［eλX］+

ε
2z ∫

%

－%
h( θ) I［θ0－z，θ0+z］( θ) d )θ = sup

q∈Q1U
Hπε
［X］．

Thus the first equality of ( i) is proved． The rest
of the theorem can be shown similarly．

For the case of unimodal prior distribution，
futher results are available which is listed in the
following．
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Theorem 3 when πε∈Γ2，then the supremum
and infimum of the Data-Free Bayesian Premiums are
sup
πε∈Γ2

Hπε
［X］ = sup

q∈Q3U
Hπε
［X］ and inf

πε∈Γ2
Hπε
［X］ =

inf
q∈Q3U

Hπε
［X］．

Proof It can be easily proved by taking
supremum first with respect to α，the mixing factor in
representation of unimodal q∈ Q2U ( see( 6) ) ．

The similar theorems to the two stated above are
present in the following on boundaries of a DDBP．

Theorem 4( DDBP) Suppose that X1，…，Xn，X
are independent and identically distributed condi-
tional on θ． Then
( i) the supremum of the Bayesian premiums is
sup
q∈Q1

Hπε
［X，X ( n)］ = sup

q∈Q1U
Hπε
［X，X ( n) ］，

sup
q∈Q2

Hπε
［X，X ( n)］ = sup

q∈Q2U
Hπε
［X，X ( n)］． ( 29)

( ii) ( i) holds when sup is replaced by inf．
Proof We again denote g( θ) = E［XeλX θ］

and h( θ) = E［eλX θ］． By the representations of
Hπε
［X，X ( n)］ and π( θ X ( n) ) ，see ( 17) and ( 7)

respectively，we have
Hπε
［X，X ( n)］ = Hπ( θ X( n) )［X］ =

Eπ( θ X( n) )［E［Xe
λX θ］］ Eπ( θ X( n) )［E［e

λX θ］ =
( ( 1 － γ( X ( n) ) ) Eπ0( θ X( n) )［g( θ) ］+
γ( X ( n) ) Eq( θ X( n) )［g( θ) ］) ( ( 1 － γ( X ( n) ) ) ·
Eπ0( θ X( n) )［h( θ) ］+ γ( X ( n) ) Eq( θ X( n) )［h( θ) ］) ．

Letting
A = ( 1 － γ( X ( n) ) ) Eπ0［Xe

λX X ( n) ］，
B = ( 1 － γ( X ( n) ) ) Eπ0［e

λX X ( n) ］，
it follows that

Hπε
［X，X ( n)］ =

A + γ( X ( n) ) Eq( θ X( n) )［g( θ) ］
B + γ( X ( n) ) Eq( θ X( n) )［h( θ) ］

．

Clearly，

Eq( θ X( n) )［g( θ) ］ = ∫Θg( θ) f( X ( n) ，θ) dθ ∫Θ f( X ( n) ，
θ) dθ = ∫Θg( θ) f( X ( n) θ) q( θ) dθ ∫Θ f( X ( n) ，θ) dθ．

Similarly，

Eq( θ X( n) )［h( θ) ］ =
∫Θh( θ) f( X ( n) θ) q( θ) dθ

∫Θ f( X ( n) ，θ) dθ
．

Consequently，

Hπε
［X，X ( n)］ (= A∫Θ f( X ( n) ，θ) dθ +

γ( X ( n) ) ∫Θg( θ) f( X ( n) θ) q( θ) d ) (θ B∫Θ f( X ( n) ，

θ) dθ + γ( X ( n) ) ∫Θh( θ) f( X ( n) θ) q( θ) d )θ ． ( 30)

Therefore，analogizing ( 30) to ( 28) with g( θ)
f( X ( n) θ) and h( θ) f( X ( n) θ) in ( 30) taking the
roles of g( θ) and h( θ) in ( 28) respectively，we
obtain

sup
q∈Q1

Hπε
［X，X( n)］ = sup

z ＞0
［A + γ( X( n) ) ∫Θg( θ) f( X( n) θ) ·

I［θ0－z，θ0+z］( θ) dθ /2z］ ［B + γ( X( n) ) ∫Θh( θ) f( X( n) θ) ·

I［θ0－z，θ0+z］( θ) dθ /2z］．
That is，sup

q∈Q1
Hπε
［X，X ( n)］ = sup

q∈Q1U
Hπε
［X，X ( n)］．

So，we have proved the first equality of ( 29) ．
The rest of ( 29) may be proved in the same way．
( 2) follows from the same arguments by replacing
supremum with infimum correspondingly．

Following therem is a counterpart of Theorem 3
in the case of data-dependent premiums．

Theorem 5 When πε ∈ Γ2，then the supre-
mum and inmum of a DFBP are

sup
πε∈Γ2

Hπε
［X; X ( n)］ = sup

q∈Q3U
Hπε
［X; X ( n) ］，

inf
πε∈Γ2

Hπε
［X; X ( n)］ = inf

q∈Q3U
Hπε
［X; X ( n)］．

Example 3 ( The Example with Gamma-Pois-
son Structure) In order to illustrate the app-
lications of the theorems，we end this section with an
example regarding the Esscher principles with
Gamma-Poisson distribution assumptions defined as
in ( 18) ～ ( 20) ． The contamination is supposed to
be unimodal with the same mode as π0 ( θ) ，the
distribution of which is prescribed by ( 20) ． That is，
the mode for contamination q( θ) is θ0 = ( b － 1) /a
( b ＞ 1 is implicitly assumed here) ． It can be
regarded as a continuation to Example 1．
( i) ( Data-Free Premium) Firstly，similar to( 17) ，

we have that
Hπε
［X］ = Eπε

［E［XeλX θ］］ Eπε
［E［eλX θ］］ =

CeλCEπε
［θeθ( eλC－1)］ Eπε

［eθ( eλC－1)］ =
△

CeλCG，
where G = Eπε

［θeθ( eλC－1)］ Eπε
［eθ( eλC－1)］．

When q( θ) ∈ Q3U ( θ0 ) ，
G = Eπε
［θeθ( eλC－1)］ Eπε

［eθ( eλC－1)］ =
( 1 － ε) Eπ0［θe

θ( eλC－1)］+ εEq［θeθ
( eλC－1)］

( 1 － ε) Eπ0［e
θ( eλC－1)］+ εEq［eθ

( eλC－1)］
=

( 1 － ε) Eπ0［θe
θ( eλC－1)］z + ε ∫

θ0+z

θ0
θeθ( eλC－1) dθ

( 1 － ε) Eπ0［e
θ( eλC－1)］z + ε ∫

θ0+z

θ0
eθ( eλC－1) dθ

．
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Now that Eπ0［θe
θ( eλC－1)］ and Eπ0［θe

θ( eλC－1)］

have been computed respectively，the boundaries of
Hπε
［X］ is thus，by Theorem 3，represented as CeλC

inf
z∈Ｒ

G ≤ Hπε
［X］ ≤ CeλC sup

z∈Ｒ
G，which can be

numerically computed without any difficult for
specified a，b，λ and C．
( ii) ( Data-Dependent Premium) First，similar

to ( 17) ，we have that

Hπε
［X; X ( n)］ =

Eπε( θ X( n) )［E［Xe
λX | θ］］

Eπε( θ X( n) )［E［e
λX | θ］］

=

CeλCEπε( θ X( n) )［θe
θ( eλC－1)］

Eπε( θ X( n) )［e
θ( eλC－1)］

=
△

CeλCG，

where G = Eπε( θ X( n) )［θe
θ( eλC－1)］ Eπε( θ X( n) )［e

θ( eλC－1)］．
Due to the representation formula ( 9) ，

G = Eπε
［θeθ( eλC－1)］ Eπε

［eθ( eλC－1)］ (= ( 1 － γ( x( n) ) )·

Eπ0( θ X( n) )［θe
θ( eλC－1)］+ γ( x ( n) ) ·

Eq( θ X( n) )［θe
θ( eλC－1) ) (］ ( 1 － γ( x ( n) ) ) ·

Eπ0( θ X( n) )［e
θ( eλC－1)］+ γ( x( n) ) Eq( θ X( n) )［e

θ( eλC－1) )］ ． ( 31)

For any distribution

qz ( θ) =
I［θ0，θ0+z］( θ) z， z ＞ 0

－ I［θ0+z，θ0］( θ) z，z ＜{ 0
( 32)

in Q3U and the realization ( x1，x2，…，xn ) of the
historical claim numbers
N( n) = ( N1，N2，…，Nn ) ，

q( θ X( n) ) =

1
z e

－nθθ∑
n

i =1
xiI［θ0，θ0+z］( θ) ， z ＞ 0，

－ 1
z e

－nθθ∑
n

i =1
xiI［θ0+z，θ0］( θ) ，z ＜ 0{ ．

( 33)

Eq( θ X( n) )［θe
θ( eλC－1)］ and Eq( θ X( n) )［θe

θ( eλC－1)］ can
be computed correspondingly using expression
( 33) ． Now that Eπ0( θ X( n) )［θe

θ( eλC－1)］ and

Eπ0( θ X( n) )［e
θ( eλC－1)］ have been calculated before

when deriving ( 22) the boundaries of Hπε
［X］is thus

represented as
CeλC inf

z
G≤ Hπε
［X］≤ CeλC sup

z
G ( 34)

with G calculated by ( 31 ) ～ ( 33 ) ． Boundaries ( 34 )
can also be numerically computed．

5 Concluding Ｒemarks

This paper has so far studied three tightly related

problems involved in the premium calculations． One is
the Bayesian approaches used in premium calculation
principles based on the loss principle． The data-free
Bayesian premiums are defined as the premium with re-
spect to the parameter-free marginal distributions of
claims． The algorithms for data-dependent premiums
are generally developed to obtain the Bayes premiums
by means of the data-free formulae． Esscher principle
when it is understood as a loss principle is completely
demonstrated as an example to show how a Bayesian
premium is calculated．

The second one is on the robustness of Bayesian
premiums． No matter a data set is used or not，the reac-
tions of the premiums to the ε-contaminative distribu-
tions /priors are computed． The theory is presented in a
general context． Some existed results are pointed to be
straightforward corollaries of the results obtained here．

The last one is the boundaries of premiums in par-
ticular when the Esscher principle is used． That is，we
have derived the boundaries for Esscher premiums
when the contaminative priors vary over a class of uni-
modal distributions，or unimodal symmetrical distribu-
tions，which are of the same mode with the contamina-
ted distribution．

The model for studying the reactions of premium
principles to the contaminative distributions are of gen-
eral features． However，as for the boundaries of the pre-
miums，the model is not a general one［26］． So it would
be an interesting future research direction to discuss
the boundaries under general models． On the other
hand，the contamination fashion adopted throughout this
paper is only ε-contaminations． If other contamination
models，such as，the one in M． Lavine［27］ among oth-
ers，are adopted，the corresponding conclusions are
open now． So，it，in the authors’opinion，indicates an-
other further interesting research topic．
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基于贝叶斯方法的保费计算的稳健性质

吴贤毅
( 华东师范大学金融与统计学院，上海 200241)

摘要: 探讨了 3 类关于保费计算原理的相关问题．首先，结合贝叶斯方法和损失原理定义了贝叶斯保费; 然后，研究了 2 类保
费计算原理的稳健性质问题: 带任意污染系数的非贝叶斯保费的稳健性质和基于 ε-污染方法讨论的贝叶斯保费关于先验分
布的稳健性质; 最后，运用 Esscher保费原理分析了当污染在某个分布类变化时保费对污染的响应以及保费的值域．

关键词: 稳健性质; 保费计算原理; ε-污染; 贝叶斯方法; Esscher保费原理; 损失原理
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