39 4
2015 7

Journal of Jiangxi Normal University( Natural Science)

Vol. 39 No.4
Jul. 2015

( )

: 1000-5862(2015) 04-0331-09

The New Developments in the Research of Nonlinear
Complex Differential Equations

LIAO Liangwen

( Department of Mathematics Nanjing University Nanjing Jiangsu 210093 China)

Abstract: The problem that an algebraic differential equation has no admissible meromorphic so—

lution is studied by using Nevanlinna“s theory and Wiman-Valiron theory. The structures of the

entire solutions of some nonlinear differential equations are given and the Hayman’s theorems to

some differential polynomials are extended by using these results. Finally a survey of his groups”

recent researches about non-linear complex differential equations and their applications is given.

Key words: Nevanlinna’ s value distribution theory; nonlinear differential equation; differential

polynomial; meromorphic solution; entire solution

DOI: 10. 16357 /j. enki. issn1000-5862. 2015. 04. 01

10 175.42 TA

0 Nevanlinna Theory

Nevanlinna theory is a useful tool in the studying
of the complex differential equations. In this section we
introduce the basic concepts and notations in Nevanlin—
na theory. For further results we suggest the author loo—
king for 15 . In this paper we always assume that f
is a nonconstant meromorphic function in the complex
plane C. We use n(r 1/(f—-a)) to denote the num—
bers of roots of {z) = a on|z|<r counting multiplic—
ity n(r f) to denote the numbers of poles of f( z) on
| z| <r counting multiplicity. The counting functions of
f are defined as following:

N(r1/f-a)) =
jrn(l 1/(f-a)) -n(0 1/(f~a))

0 t
n(0 1/(f-a))logr

dt +

N(r f) :L’n(tf) _tn(of)dt+n(0f)logr.

Furthermore denote m(r f) and m(r 1/(f-a))
(a# ) as

120150145
(11271179)
(19619
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2m
m(rf) = [ log"|fre") |6

where log” x = max{log x 0}. Nevanlinna characteris—
tic function of a meromorphic function f will be defined
asT(r f) =m(rf) +N(r f).T(r f) is a non-nega—
tive increasing function for nonconstant meromorphic
function f. If f is transcendental then T(r f) /log r —
wasr— o. If fis a rational function then it is easy
to show that T(r f) = degflogr + O(1).

By applying Jesen formula it is easy to deduce the
First Fundamental Theorem.

Theorem 1 ( First Fundamental Theorem)  Let
f2) be meromorphic in |z| < R( < ). Ifais an ar-
bitrary complex number and0 < r < R and

fAz2) —a = Zcizi ¢, 70 m e Z

i=m

is the Laurent expansion of f — a at the origin then we

have
T(r f)y =T(r 1/(f-a)) +loglc, |+ &(r a)

where |g(r a) | < log2 +log"a.

Nevanlinna N
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Now we state Nevanlinna’ s Second Fundamental
Theorem which is the most important in Nevanlinna
theory.

Theorem 2( Second Fundamental Theorem)  Let
J/ be a non-constant meromorphic function let g =2 and

leta, a, *** a, € C be distinct points. Then

q

m(rf) + Y m(r1/(f-a)) <

27(r f) —L]:fl(r) +S(r f)
where

N,(r) =2N(rf) =N(rf) +N(r 1/
and

S(r f)y =0(log rT(r f)

except for a set £ with a finite linear measure.

) (r— o)
Definition 1 The order of a meromorphic func—
tion f is defined by

p =p(f) = limlog T(r f) /log r.

Definition 2 The lower order of a meromorphic
function f is defined by

A = A(N) = limlog T(r /) /log r.

r—o

Definition 3 We say that a meromorphic func—

tion a( z) is a small function of f{ z) if

(ra) =o{T(rf)} roxo re¢k
where E is a set of r with a finite linear measure.

The following logarithmic derivative Lemma is
very useful in the study of complex differential equa—
tions.

Theorem 3 *
morphic function Then m(r f °/f) = O(logr) (r—
s =

possibly outside a set E of

Let f{ z) be a nonconstant mero—

w) if fis of finite order and m(r

O(log(rT(r f))) (r— o)

r with finite linear measure if f{ z) is of infinite order.

I Wiman-Valiron Theory

Wiman-Valiron theory is useful in the study of en—
tire functions. Let f be an entire function and its Taylor
expansion be f{ z) = z a,z". We define the central

n=0

index and the maximum term of an entire function f
v(rf) u(r f) as following:
mlr )
v(r f) " =ulr f)}.

Ifr =0 thenv(r f) =p wherea,is the first nonzero

n
= In aX‘an ‘r
n

= max{n ‘a”

coefficient in the Taylor expansion of /.

®©

Example | f(z) = ¢ = z le”
n:

n=0

then M( r

N =r"/ rtado(rf) = r

largest integer not greater than r .

where r is the

o

Theorem 4 Let f{z) = 2 a,z" be a noncon-

n=0
stant entire function. Then we have the following three

conclusions:

(1) There exists a non-negative real number r,
such that u( r f) is a strictly increasing function of r for
r=ry, andu(r f) — o asr— o;

(i) v(r f) is a nondecreasing function of r fur—
thermore if f{ z) is transcendental thenv(r f) — o as
r— o and v( r f) is right continuous;

(i) m(r f) is a continuous function of r .

Theorem 5( Wiman-Valiron Theorem * )  Let f
be a transcendental entire function and 0 < § < 1/4.
Suppose that at the point z with |z | = r the inequality

A2 | > M(r fu(r ) "7

holds. Then there exists a set Fin R™ of finite logarith—

mic measure i. e. fl/tdt < + o such that
r

Sz = (u(r ) /2) (1 +0(1)) A2)
holds whenever m is a fixed nonnegative integer and

relk.

2 Admissible Meromorphic Solutions
of Algebraic Differential Equations

In general a nonlinear algebraic differential equa—

tion is of the form:
Pz ff /) =0 (1)
where P is a polynomial in f and its derivatives with
meromorphic coefficients. One can rewrite equation

(1) in the form:

a2 ()M (f) =0 (2)

rel
where I is a finite set of multi-indices (A, A, -*-

A
fine a differential monomial in f as
My 2 f = a, () ()M (f7)
The degree v, and the weight I'), of M, are de—
fined by

) =Aand a,(2) is a meromorphic function. We de—

n

Yu, = Ao+ A+ +A

n



( ) 333

Iy, =X 20, + +(n+1)A,.
Thus the left hand side of (2) can be expressed
as a finite sum of differential monomials and which will

be called a differential polynomial in f i. e.

Pzf =Pzff - f") = XM =f.

rel

The degree y, and the weight I", of P are defined
by yp = maxy, [I', = maxl’, .

We say that the term M, z f is a dominant term
of P z f ifyy, = yp. Obviously a differential polyno—
mial may have more than one dominant term. A mero—
morphic solution f of equation ( 2) is called admissible
i T(r a,) = S(r f) holds for all coefficients «, ( z)

A el

In 1980 Gackstatter and Laine °
special algebraic differential equation of the following
form ()" = Q(= /)

in f with meromorphic coefficients and conjectured that

considered the
where Q( z f) is a polynomial

it does not possess any admissible solution when
q = degQ(z f) <n -1

This conjecture attracts many researchers’ inter—
est "? .In 1990 He and Laine ' gave a positive an—
swer to the above conjecture. One year later Ishizaki ®
proved the following more general result.

Theorem 6  The differential equation P(z
f) =0(zf) where P(z f°) resp. Q(zf) is a
polynomial inf* with meromorphic coefficients such that
=degQ(z f) <p-1. = deg P(zf) -1

admits no admissible solutions.

1 <gq:

For general algebraic differential equation Wit—
tich " gave a classic result as follows.

Theorem 7 If the algebraic differential equation
P(z f) =0 where P(z f) is a differential polynomial
in f with polynomial coefficients has only one dominant
term then the equation has no transcendental entire so—
lutions.

The following theorem is an extending result of
Theorem 6 and Theorem 7.

Theorem 8 '*  If the algebraic differential equa—
tion

P(zf) =0 (3)

where P( z f) is a differential polynomial in f with mer—
omorphic coefficients has only one dominant term then
equation ( 3) has no admissible transcendental mero—

morphic solutions satisfying

N(rf)y =S(r)).
The following two examples show that conditions
P(z f) has only one dominant term and N(r f) =
S(r f) in Theorem cannot be dropped.
Example 2 The following differential equation
(FA2+2ff 72+ (1 +1/2)f =1/ =0 (4)
has an admissible transcendental meromorphic solution
f2) = (cos z) /zsatisfying N(r f) = S(r f). How—
ever equation (4) has three dominant terms.
Example 3 The meromorphic function satisfies
flz) = tan(z") the following algebraic differential e—
quation
(SIS =4V =) Ve f" =
8217 +2f7 +87f + 2. (5)
Equation (5) has only one dominant term but the
counting function
N(rf)y =T(rf) +S(r ).
The following result is the extension of Theorem 6.
Corollary 1 "
P(z /") = Q(z /)
where P(z f?) resp. Q(z f)
/% resp.inf with meromorphic coefficients such that
¢ =degQ(z f) <p-1. = deg_/(k)P(zf(k)) -1

and £ = 1 is a positive integer has no admissible tran—

The differential equation

is a polynomial in

scendental meromorphic solutions.

3 A Certain Type of Nonlinear Dif-
ferential Equations

Some mathematicians studied the nondinear dif-

ferential equations of the form :
J"+ Pz ) =pie" +pe™

where P,( z f) denotes a polynomial in f and its deriva—
tives with a total degree d <n —1 with small functions
of f as the coefficients p,(z) p,(z) are two nonzero
polynomials and a; «, are two nonzero constants 1548
Moreover P,(z f) is called an algebraic differential
polynomial inf if all its coefficients are polynomials in z.

Recently it is shown in 18 that the equation

4f%(z) +3f"(z) =- sin3z

has exactly three nonconstant entire solutions namely

A

fi(z) =sinz f,(2) = 5 cos z —?sinz
3 1 .
fi(2) = —gcosz — 5sinz
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More recently the following two results have been
obtained:

Theorem 9
P,(z f) denote an algebraic differential polynomial in
f(z) of degree d < n —3 with small functions of f as the

Let £ = 1 be an integer and

coefficients. If p,(z) p,(z) are two nonzero polynomi—
als and o, «, are two nonzero constants such that
o, /a, is not rational then the equation

S+ P(zf) =pi(2)e™ +py(2)e™
does not have any transcendental entire solution.

Theorem 10 “

/) be an algebraic differential polynomial in f{ z) of de—

Letn =2 be an integer P,( z

gree d < n — 2 with small functions of f as the coeffi—
cients and p, p, @, a, be nonzero constants such that
o, # a,. If fis a transcendental meromorphic solution
of the following equation

f'(2) + P(f) =pe™ +pe™
and satisfying N(r f) = S(r f) then one of the fol—
lowing holds:

(i) fl2) = ¢, +c e

(i) flz) = ¢y + e,

(iii) A2) = ¢ e +c,e” anda, +a, =0
where ¢, is a small function of f{ z) and ¢, ¢, are con—
stants satisfying ¢] = p, ¢; = p,.

In 20 Liao Yang and Zhang obtained the fol-
lowing results.

Theorem 11 Letn =3 and Q,( z f) be a differ—
ential polynomial in f of degree d with rational functions
as its coefficients. Suppose that p, p, are rational func—
tions and o, «, are polynomials. If d < n —2 the fol-
lowing differential equation

POz = a2 e p(D e (6)
admits a meromorphic function f with finitely many
poles. Then a”; /a”, is a rational number.

Furthermore only one of the following four cases
holds:

(i) flz2) = q(2)e™? and a"/a’, =1 where
q( z) is a rational function and P(z) is a polynomial
withnP(2) = a’, = a’;

(i) Alz) =q(2)e"? and eithera’,/a’, = k/nor
a’/a’y, = n/k where ¢( z) is a rational function £ is
an integer with 1 < £ < n and P(z) is a polynomial
withnP(z) = a”,ornP(2) = a;

(1il) fsatisfies the first order linear differential e—

quation

fo=(ps/(npy) +as/n)f+y
and a’,/ o’ =(n — 1) /n or f satisfies the first order
linear differential equation

So=(p i /(np) +a’/n)f+y
and

a’ /o’y =n/(n-1)
where i is a rational function;
(M) A2 = 7D+ p(s)e

a’;/a’, =—-1 wherey, v, are rational functions and

B3 and
B,(2) is a polynomial withn8", = a’, ornB8", = a’.
Remark 1

For instance f = e” +z +1 solves the following non-in—

The four cases in the theorem exist.

ear differential equation
fP=2(z+ D) = (z+ 1) f=e” +3(z+1)e™

This example shows the case (3) in the theorem
certainly exists.

Corollary 2 Letn = 3 and Q,(z f) be a differ—
ential polynomial in fof degree d with rational functions
as its coefficients. Suppose that p, p, are rational func—
tions and o, «,are constants. If d < n —2 the follow—
ing differential equation

f" 404z f) =pi(2)e™ +p,(2) ™
admits a meromorphic function f with finitely many
poles. Then a, /a, is a rational number.

Furthermore only one of the following four cases
holds:

(i) a,/a, = Landfl2) = q(2) e where

q(2)" = pi(2) +p.(2)
is a rational function;
(i) a,/a, = n/kforsomel <k <dandf{z) =

az/n

q(z) e where ¢q(z) " = p,(2) or a;/a, = k/n for

some 1 <k <dandf(z) =q(z)e?”" whereq(z)" =
p2(2);
(i) a,/a, = (n = 1) /n and f satisfies the first
order linear differential equation
f7o=(pi/(npy) +a/n)f+¢
or
a,/a, = n/(n-1)
and f satisfies the first order linear differential equation
fo=(p/(np) +a/n)f+¢
where iy is a rational function;
(iv) @, + a, = 0 and (2) = q,(2)e™" +
0:(2) ™" where ¢, (2)" = p,(2) and ¢,(2)" = p,(3).
Theorem 12 Letn =3 and Q,( z f) be a differ—

ential polynomial in f of degree d with rational functions
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as its coefficients. Suppose that R p, p, are rational
functions and a; «, are polynomials. If d < n — 2 and
the following differential equation

S"+REST 0,02 /) = pi(2) e +py(2) e (7)
admits a meromorphic function f with finitely many
poles. Then o, /a”, is a rational number.

Furthermore only one of the following four cases
holds:

(i) Az2) =-R(2)/n+q(2)e"? anda’,/a’, =
1 where ¢g( 2) is a rational function with and P( z) is a
polynomial with nP(2) = a’, = a’;

(ii) Az2) =- R(2)/n + q(2) " and either
a’/a’, = k/nora’/a’, = n/k where q(z) is a ra-
tional function £ is an integer with 1 <k < n and P( z)
is a polynomial with nP{(z) = a’, ornP(2) = a;

(iii) fsatisfies the first order linear differential e—
quation

f=(pa/(np,) +a’/n)f+¢
and
a' /o, =(n-1)/n
or f satisfies the first order linear differential equation
fo=(p/(np) +a’/n)f+¢
anda’/a’, = n/(n-1)

tion;

where i is a rational func—

(iv) A2) == R(2) /n+y,(2) 7 +9,(2) -
e and a’/a’, =- 1 where Y, 7Y, are rational
functions and B,( z) is a polynomial with n8" = o, or
nB, = a.

Corollary 3 Letn = 3 and Q,(z f) be a differ—
ential polynomial in fof degree d with rational functions
as its coefficients. Suppose that R p, p, are rational
functions and a; «, are constants. If d < n -2 the fol-
lowing differential equation

ST+ RS +0Qu(2 ) = pi(2) e +py(2) e
admits a meromorphic function f with finitely many
poles. Then «a; /a, is a rational number.

Furthermore only one of the following four cases
holds:

(1) a,/a, = 1andf{2) = R(z) /n +q(z) e
where ¢ (2) "

(i) o, /0, = n/kfor somel <k <dandf{z) =

= p,(z) +p,(z) is a rational function;

R(z) /n + ¢(2) e where ¢ (2)" = p,(2) or o,/
a, =k/nforsomel <k < dand f{z) = R(z) /n +
q(2) e where g(2) " = p,(2);

(iil) a,/a, = (n = 1) /n and f satisfies the first

order linear differential equation f © = (p~,/(np,) +
a,/n)f+yora/a, = n/(n -1) and f satisfies the
first order linear differential equation
£ 07/ () +a/n) [+
where iy is a rational function;
(iv) o + @, = 0 and
f2) == R(2) /n +q,(2) ™" + qy(2) ™"

where ¢, (2)" = py(2) and g, (2) " = pa(2).
The Sketch of the Proof of Theorem 11
Step 1

by using the following Clunie lemma.

Reduce the degree of the equation ( 6)

213)

Lemma 1 ( Clunie Lemma Let f{z) be

meromorphic and transcendental function in the plane
and satisfy f"(z) P(f) = Q(f) where P(f) Q(f) are
differential polynomials in f{ z) with rational functions
as the coefficients and the degree of Q( f) is at most n
then m(r P(f)) = O(logr)(r— o) iffis of finite
order andm(r P(f)) = O(log(rT(r f))) (r— )
possibly outside a set E of r with finite linear measure if
f( 2) is of infinite order.

By differentiating the equation (6) and elimina—

a(3) (2)

ting e e respectively from the equations we

have

(h1(z)f2 + hy(2) ff 7+ hy(2) f’z + hy(2) ff ")
£ =05 (2 ).

By Clunie Lemma the differential equation is re—
duced into the following differential equation
h(2) f +ho(2) ff 4 hs(2) f 2 +hy(2) [ = al2)
where h,(z) (i = 1 2 3 4) a(z) are rational func—
tions.

Steps 2 Linearization

By using the following main lemma we can reduce
the above equation into a second order linear differenti—
al equation.

Lemma 2 Let ¢, ¢, g; a be rational functions
and g;a # 0. If the differential equation

(S + (D ff +q5(2) f7 = alz) (8)
admits a transcendental meromorphic solution then

(1) any meromorphic solution of ( 8) must be of
finite order and

(i) the following identity holds:

2

0
‘]3(‘]5 - 44q,9;) ;""b(qz 4q9,95) -

0:( ¢ = 49,45) "+ (42 —44:195) ¢5 =0
and any transcendental meromorphic solution f of the e—
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quation ( 8) satisfies the following linear second order

differential equation

w_ (@ _ 495 _ 42 ,_L(,_ a’)
f - (20/ 2q3 zq% )f 7, q] q] a f:

Furthermore if ¢ — 4q,q; # 0 and deg, ¢, =
deg, q; then the differential equation ( 8) has no tran—
scendental meromorphic solution.

The Sketch of the Proof of Theorem 12

Assume that f is a meromorphic solution with only
finitely many poles of the equation (7). Let g(2z) =
flz) +R(2) /n.Then gis a transcendental meromor—
phic function with only finitely many poles and satisfies
the following differential equation

fr+ Q:-z( z f) =pi(2) et 4 p2(2) el
Where Q. ,(z f) is a differential equation with degree
d < n -2 . The conclusions of the theorem follows im—

mediately from Theorem 11.

4 Nonhomogeneous Algebraic Differ—
ential Equations and Hayman '’ s
Theorems of Differential Polynomi—
als

It is always an essential problem to find out a
structure of solutions to any differential equations. In
1980 F. Gackstatter and 1. Laine *
the algebraic differential equation ( f )" = p,. (/)

conjectured that

where p, (f) is a polynomial in fand n is a positive in—
teger does not possess any admissible solution when
m <n-1.In1990 Y. He and I. Laine ' gave a posi—
tive answer to the conjecture. Recently J. Zhang and
Liao ' proved that if the algebraic differential equation
with polynomial coefficients

Q.(z/) =0 (9)
has only one dominant term ( highest degree term)
then (9) has no admissible transcendental meromor—
phic solutions with a few poles. There are also many
other papers concerning the structure of solutions to va—

1920 2327

rious differential equations . Recently Liao—

Ye ** consider the algebraic differential

[+ 0z 0) = u(2) e (10)
where Q,(z f) be a differential polynomial in f with
n = d + 1 and rational function coefficients w is a non—

zero rational function and v is a non-eonstant polynomi—

al. Clearly f" f “is the only dominant term in ( 10)
and its nonhomogeneous term is a transcendental mero—
morphic function. Thus Liao—Ye find a simple and neat
expression for meromorphic solutions to ( 10) if the so—
lutions have a few poles. This also means the solution
has finitely many zeros and determined by the term ue'
in the differential equation. Further the result can be
used to generalize a theorem of Hayman in 29 .

Hayman * proved that if fis a transcendental en—
tire function then f /" assumes every non-zero complex
number infinitely many times provided that n = 2 .
Since then there are many research publications ***
regarding this type of Picard-value problem. For exam—
ple Mues * extended the result proving that if p(f) is
a non-constant polynomial in f then p(f) f ~ assumes
every non-zero complex number infinitely many times.
Zhang and Li ** proved that if fis a transcendental
meromorphic function with N(r f) = S(r f) and p a
polynomial with degreed d=1 then p(f) f “takes every
non-zero complex number infinitely many times. Re—
cently Liao-Ye * prove that if p, ¢, are two polynomi-
als with degree k£ = m + 1 and f a transcendental entire
function then p,(f) f “+¢,(f) assumes every complex
number with possible one exception value infinitely
many times. More interesting we show that if p,( f)
f 7 +q,(f) takes the exceptional value finitely many
times then we can prove that ¢, has to be a constant
polynomial and p, is a complete power function or
M2)
consider differential equation

S0z N) = p(2) e (11)

where Q,(z f) be a differential polynomial in f of de—

= Ae™ + C where A B C are constant. Liao *

gree d < n — 2 with rational functions as its coeffi-
cients p is a nonzero rational function « is a noncon—
stant polynomial. He got if the equation ( 11) has a
meromorphic solution f with finitely many poles then f
must has finitely many zeros. Furthermore this result
can be used to generalize a theorem of Hayman in
29 .

Theorem 13 *  Let Q,(z f) be a differential
polynomial in f of degree d with rational function coeffi—
cients. Suppose that u is a non—zero rational function
and v is a non-eonstant polynomial. If n = d + 1 and the

following differential equation

SEE0U N = u(z) e
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admits a meromorphic function f with finitely many
poles then f has the following form

f2) =s(2) " Q2 /) =0
where s( z) is a rational function with

sS"((n+1)s"+vs) =(n+1)uw
In particular if u is a polynomial then s is a polynomi—
al too.

Remark 2 The conditionn = d + 1 in the theo—
rem is necessary. For example f{z) = € + z solve the
following differential equation

FA 2 f R R = "
wheren = d = 2.
Theorem 14 **

function ¢, (f) = b,f" + =+ + b.f + b, a polynomial

Let f be a transcendental entire

with degree m and n a positive integer withn = m + 1.
Thenf 7" + q,(f) assumes every complex number «
infinitely many times except a possible value b, =
q,(0). On the other hand if f " + ¢,(f) assumes
b, =¢,(0) finitely many times thengq, (z) = b, fand
/ “have only finitely many zeros.

Remark 3 The restrict conditionn = m + 1 in
the theorem is necessary. For instance if f{z) = e" +1
and q,(2) =-22 +3z thenf f* -2f> +3f =e” +
1 does not assume 1 # ¢,(0).

Theorem 15 **

function

Let f be a transcendental entire

P(f) =af" + - +af+a,

a polynomial with degree n

4.(f) =bf" + - +bf+b
is a polynomial with degree m and n = m + 1. Then
f p.(f) +q,(f) assumes every complex number o in—

finitely many times except a possible value

q,(—a,,/(na,)). On the other hand if f p,(f) +
/(na,))

q,.(f) assumes the complex value ¢, ( — a

n-1

finitely many times then either

(i) p.(2) = a(z +a,/(na))" q,(2) is a
/(na,)) ;and

f+a,,/(na,) f  have only finitely many zeros; or

(ii) f{2) /(na,)

some constants; only when ¢, is non-constant and f'is of

constant polynomial which is ¢,( - a

n-1

= Ae” + a where A B are

n-1
finite order.

Remark 4 Theorem 14 is a special case of The—
orem 15. But we need Theorem 14 in the proof of The—
orem 15.

Remark 5 1t is challenge to prove that Theorem

14 and/or Theorem 15 are valid for meromorphic func-
tions in the complex plane.

Example 4 Iff{z) = ¢ then

FAS =) +f7 =
does not assume 0 = ¢,(0). If g(z) = e + 1 then
g (g — 1) " does not assume zero.

Theorem 16 **  Letn=2and Q,(z /) be a dif-
ferential polynomial in f of degree d with rational func—
tions as its coefficients. Suppose that p is a nonzero ra—
tional function « is a nonconstant polynomial and d <
n — 2 . If the following differential equation

S0 ) = p() e
admits a meromorphic function f with finitely many
poles then f has the following form f{z) = ¢(z) e"?
and Q,(z f) = 0 where ¢(z) is a rational function
and r( z) is a polynomial with ¢" = p nr(z) = af2).
In particular if p is a polynomial then ¢ is a polynomi—
al too.

Remark 6 The condition d < n — 1 is necessary.
For example f(z) = e + zsolve the following differen—
tial equation

FF 2R R = e
wheren = d = 2.

In 1959 Hayman * studied Picard-value problem
of some type of differential polynomial of transcendental
entire functions. In fact he proved the following re—
sults.

Theorem 17 Let f be a non-constant meromor—
phic function in C a b( # 0) be finite values and k&
be a positive integer. Then either f = a or £? = b has
at least one root. Moreover if f is transcendental then
either f = a or /' = b has infinitely many roots.

As a consequence of Theorem 17 it is easy to
prove

Theorem 18

tion then f” + af “has infinitely many zeros for each fi—

If fbe a transcendental entire func—

nite nonzero complex number a .

In fact if fis an entire function then g = 1/f has
no zero. It follows from Theorem 17 that g~ — 1/a has
infinitely many zeros so does f* + a f ~.

Motivated by this result we research the above
nonlinear differential equation first. With this in hand
we generalize Theorem 18 to a certain kind of differen—
tial polynomials.

Theorem 19 *  Let fbe a transcendental entire
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function

Q.(N) =af" + = +af+a
a polynomial of degree n = 3. Then f ~ + Q,(f) as-
sumes every complex number « infinitely many times
/(na,)). On the
other hand if /'~ + Q,(f) assumes the complex value

except a possible value Q,( - a,_,
Q.(-a,,/(na,)) finitely many times then
Q.(2) =a,(z+a,,/(na))" +B(z+
a, /( na’n) ) + Qn( - anfl/( na/t) )
fz) =Ae™ —a, /(na).

From Theorem 19 we have

n-1

Corollary 4  Let f be a transcendental entire
function thenf ~ + a,f" + P,(f) assumes every finite
complex number « infinitely many times where n = 3
a, # 0 and P,(f) is a nonlinear polynomial of f with
degree d < n - 2 or a constant.

Remark 7 In Theorem 19 and Corollary 4 the
restrict condition n = 3 is necessary. For example let
f=e -1 then

foHf2 =52 12

does not assume 1/2. In Corollary 4 the restrict condi—
tiond < n —2 is necessary. For example letf = e +1
then f “ +f°/3 - f* does not assume —2/3. The restrict
condition P,( f) is a nonlinear polynomial is necessary.
For example f{z) = € thenf ~ - 2fdoes not assume
0 Theorem 19 and Corollary 4 are not valid for mero—
morphic functions. For example f{z) = tan z then
[ +f +f* = sec'z does not assume 0.

Corollary 5 Let .# be a family of holomorphic
functions in domain D

0.(3) = az +

a polynomial of degree n = 3. If for every functionf e

+a,z + a,

Ff7+ Q,(f) does not assumes a complex number
a#Q(-a,,/(na,)) in D then .Zis normal in D .
Corollary 6 Let .7 be a family of holomorphic
functions in domain D . If for every functionf e .7 f ~ +
a,f" +P,(f) does not assumes a complex number a in
D wheren =3 a, # 0 and P,(f) is a nonlinear poly-
nomial of fwith degree d<n -2 or a constant then .77

is normal in D.
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