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Abstract: For Hamiltonian systems symplectic integrators or multisymplectic integrators are superior to tradi—

tional numerica methods for Hamiltonian systems. However most of them are implicit and engender a coupled

nonlinear algebraic system at every time step. It leads to reduce the computational efficiency directly. Splitting

multisymplectic integrator which combines multisymplectic integrators with splitting technique can offset this

flaw. The framework of this numerical method will be briefly reviewed. Some numerical examples are shown to il-

lustrate the application of the methods in physics.
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0 Introduction

Symplectic integrators have been applied to many
contexts ( such as quantum mechanics astronomy)
since they were first established systematically by Feng
in 1984 ' . For this kind of numerical methods a lot of
theoretical progresses and applications are made during
the last three decades > . It was extended to multisym—
plectic background by Marsden Reich & Bridges at the
end of last century ** in other words we did not only
consider symplectic structures in time but also in space
direction. Now multisymplectic integrators ( MIS) are
widely used to solve mathematical models with multi—
symplectic structures * " .

However to preserve the multisymplectic conser—
vation law which is the naturalistic character of the o—
riginal Hamiltonian system ( HS) an undesirable and
intrinsic feature of this kind of methods is their implici—
ty for inseparable HS. This leads to solve a nonlinear

algebraic system for nonlinear problems and huge scale

algebraic system for multidimensional problems. For ex—
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ample to numerically solve 3D Gross Pitavskii equation
in Bose¥instein Condensates by MIs we divide the
spatial domain in each direction with 100 parallel
lines. Then a 10° scale nonlinear algebraic system need
be solved at every time step. It is very difficult to finish
such a duty by general PC. This drawback will greatly
narrow the application of Mls and reduce the computa—
tional efficiency '*** .

To repair this deficiency and widen the applicable
fields of MIs we proposed a novel kind of Mls which is
said to be splitting multisymplectic
(SMI) "2 The main idea underlying this kind of

methods is just to use splitting technique to resolve the

integrator

difficulty. In other words we split the original HS into
several sub systems which are symplectic or multisym—
plectic. Each of the sub HS should be easier to solve
than the original one. Then we approximate them by
symplectic methods or Mls. For example we can split a
nonlinear PDE into one or more linear PDEs and non-—
linear PDEs "' . We can also decompose a multidi—
mensional PDE into several local one-dimensional

PDEs . The splitting is very flexible.

( 20142BCB23009 20151BAB201012)
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The multisymplectic Hamiltonian partial differenti—

al equation with m—dimensional spatial variables reads

i+ Y Kz, = V.S(2) (1)

=y
where M and K.are skew-symmetric matrices and S( z)
is some smooth function which is called Hamiltonian
function. Taking variational formulation of this form we

can get the following multisymplectic conservation law

( MSCL)

9 - 9
— + —K. = 0
atw i=1 axiKL

with symplectic forms w = dz A Mdz «;, = dz A\ K, dz.
Furthermore for the multi-symplectic system there is

local energy conservation law
Ip(z) +V+Q(z) =0
ot
if S(z) is autonomous with the energy density P(z) =

1 &
S(2) = 5 Xa'Kz, and energy flux Q(2) =

%( 7Kz 7Kz, - 2K,z)" .

Details about symplectic and multisymplectic

14 60 .
and we will o—

background for (1) we refer to
mit them to save the length of the paper. In this review
we will illustrate the SMls for 1D case and multidimen—
sional case.

This paper is organized as follows: In Section 1
brief overview on splitting method will be reported. Sec—
tion 2 focuses on SMls for 1D multisymplectic systems.
In Section 3 the SMI for multidimensional multisym—
plectic system that is LOD-MI will be presented. Some

conclusions and remarks will be drawn to end the pa—

per.

1 Splitting Method

As is stated in the previous section the main idea
of splitting multisymplectic integrators ( SMI) is to
combine Mls with splitting technique here a short ret—
rospection of the splitting method will be performed.
The starting point of splitting method is to decompose
the original problem into several easier subproblems.
Then the subproblems will be solved one by one exactly
or numerically. The solver of one subproblem is em-

ployed as the initial data of the following one.

For the formal ordinary differential equation with

initial data

%u(x ) = Aulx ) = ( L+ I)u(x 1)

u(x 0) = uy(x) (2)
where.Z % and ./Jare spatial operators we have the
formal solution
u(x t) = exp(t.2)u,(x) =exp(t( L +.7))uy(x).
In practical computation it is not easy to present the
exponential operator exp(t( £ + ./7)) exactly or nu—
which

are formal solution operators of the simpler procedures

merically. However exp(t.%) and exp(t/")

%u(x 1) = Zu(x t) (3)
%u( xt) = Ju(x 1) (4)

respectively may be computed easier than problem(2) .
Unfortunately exp(i( % +.747)) # exp( %) exp (t.7)
except % and ./ are commutators. To find the approxi—
mate solution for the original problem we can solve the
simpler subproblems (3) and (4) one by one with an
appropriate step sizes.

Suppose 7 be the time step size " = nr the fol-
lowing two composition are often adopted.

* First-order splitting:

u(t") = exp(t( L+ 0))u(t"") =

exp(7.%) exp( /) u( ") =
exp( 7.%) exp(7./)  "uy-

In this splitting to get the solution u"*' we only need
solve both subproblems (3) and (4) one time at every
time step with full time step 7 . It is suitable for parallel
computing.

* Second-order splitting:

u( ") = exp( %%) exp( 7.%) u( tn—l) -

exp( %Z) exp( 7./) exp( 7%) exp( 7.7") exp( %%) .

u(1"?) = exp( T2 exp(rd) exp(r) "
exp( 7./) exp( %/) 1y (5)

In the SMI context it is required that the subprob—
lems (3) and (4) be approximated by symplectic inte—

grators or Mls. In this article we consider nonlinear

11 1546]

splitting and local  one-dimensional  split—

12431820
ting .
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2 Splitting MlIs for 1D HS

To describe the main point SMIs for 1D HS we
consider the fourth-erder nonlinear Schrodinger equa—
tion with a trapped term ( FNSETT) "'

e 6] |Pu = 150(sin’x) u = 0

(xt) e(0L) x(O0OT (6)
u(x 0) =uy(x) e 0L

u(xt) =u(x+L1t) te OT

where u,( x) is a prescribed complex-valued function.

w, +u

We will only give a sketch of the method here for
detailed description we refer to 11 15 .

Letz = (pqgeay Bny)'
multisymplectic Hamiltonian formulation of FNSETT

we can get the

(6) with Hamiltonian functional

S(z) =- %(p2 + qz) Z 4 755inzx(p2 + qz) +

%(W +B) - en - ay

and skew symmetric matrices

® -1.000 0 0 0f
O 000 00 0 00
anooooooog
™ 00000 0 00
M:gJ 0
00000 0 Of
Et)ooooooog
EpoooooooD
% 00000 0 ol
00 -1 00 0 0 1 0
810000001%
OO0 000 -1 00 0f
0o 000 0 -1 0 00
K = E
O 000 0 00 o0f
Bo 0000000%
-1 000 0 00 0f
o -1 00 o o0 o0 oV

(7)
We discretize the system by midpoint rules both in

time and space
Zn,+] _ zn n+1/2 _ n+1/2
j+1/2 +172 j
M- T 4
T T

n+l/2  _ n+l n _ n+1/2 n+1/2
where 2,y = (21 +200) 72 = (27 +577) /

= V.S ( z_;': 11//22)

n+l n n+l
2 =(z) +z,, +3

g +2z;) /4. This scheme is of sec—

ond-order both in time and space directions and can be

coded in the following form

i n n n n n

E( du, +48,ur, +68,u; +48,u},, +du’,) +
4 n+l1/2 3 n+l/2 | 2 n+l1/2 n+l/2 | 2 n+1/2
quj == Z( ‘ i3 | Wiz T 3 ‘ U112 i1t

n+1/2 2 n+l/2 n+1/2 2 n+l/2
3| )

75, . »
12 | W T ‘ Wisp | Upsp) t —(sin Xi3p ®

4

u,,'ljal//z2 + 3Sin2xj—l/2 u;lfll//z2 + 35in2x_,'+1/2u_,"1++11//22 +

sinzxj+3/2 uj,'f;//zz) (8)
here 8 is the standard central difference quotient opera—
tor to 0,4 .

This scheme is very inefficient because a com-—
pletely coupled nonlinear algebraic system needs to be
solved at every time step. To improve the computational
efficiency we split the original FNSETT ( 6) into the

linear subproblem and nonlinear subproblem

T (9)
iw, = Ju = 150( sin’x) u - 6 | u|?u. (10)

Then the linear subproblem (9) can be transferred into
the multisymplectic form ( 1) with the same symplectic
structure matrices (7) and different Hamiltonian func—

tion
Si(2) = %(t/f2 +B°) —¢en - ay.

The nonlinear subproblem ( 10) is Hamiltonian at ev—

ery spatial point x with Hamiltonian function
$:(2) = T5(sin®) (5 + ) = 2 (p* + )2

With the midpoint rule used to subproblems (9) and
(10) and adopting the second-erder splitting (5) we

have the following procedure:

* n

uw, —u 1
n oo J_ .2 _
w/=u; i =3 (150sin"x;

T7/2

() +u);

1. " .
5\u1 +u

* *x 1 A A A A
u; =u, E( S,u;, +48,u; , +65,u; +46,u;,, +

8,1i,,,) +8'u, = 0;

142

* % 1. j Y
W, :>u]7” i L— =
T7/2

LS5 [w™ +u " [7)(u" +u ") (11)

J
A * * % A
+u” ") /2 Su; =

j=012-- N whereu; = (y
(u " —u ) /T

The scheme is of second order in time and space
directions. Readers who are interested in this scheme

.. . 11
can take an additional overview
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It is not hard to find that to code the procedure
one only need to solve a coupled linear algebraic sys—
tem and two uncoupled nonlinear algebraic systems. It
will spend much less time than MI ( 8) which will be
verified in the numerical example 1.

To compare the computational efficiency between
the general MI (8) and SMI (11) we give a numeri—
cal example.

Example 1 We study the following 2m—periodic

initial value problem

i, +u,, —150(sin’x) u +6|u|?u =0
5 o

u(x 0) = =—(1 +1i)sinx (12)
2

u(xt) =u(x+2wit) =0

The problem ( 12) admits a theoretical solution

u(x t) = Sexp(i(t + w/4)) sin «.
We simulate the problem by MI (8) and SMI ( 11).
The time length is T = 2 . The results including error in
l, and [ under various mesh partitions consumed CPU

time by these two schemes are listed in Table 1.

Table 1 Comparison between MI and SMI.

7/h scheme el » e . CPU( sec)
r = 0.001 MSRK 5.552 x 107 8.255 x 107 14
h = w/20 SMI 9.903 x 107" 3.250 x 107" 2.8
7 = 0.002 MSRK 5.922 x 107 1.252 x 107° 41
h = w/40 SMI 1.084 x 107° 6.004 x 1079 3
7 = 0.001 MSRK 1.845 x 107° 3.826 x 107° 58
= w/40 SMI 3.973 x 107" 1.375 x 107" 5
From Tablel one can observe that the SMI ( 11) 110, C, 11 0, D,
K, = — K, = —
is much more efficient than MI ( 8) . : 2 [ -C, 04] 2 [ -D, 04]
. ) here J. = |72 %) 5 20 -1
3 LOD-MI for Multidimensional HS R PR [1 0 ]
2 2
0, I L 0 0, I
In this section we give an overview for local one— L, = [ : 2] C, = [ : 2] D, = : 2]
12 02 02 02 02 02

dimensional MI for multi—dimensional HS. To save the
length of this paper we only present the framework of
the method for more details about this method we refer
to 1243 .
The dimensionless Gross-Pitaevskii ( GP) equa—
tion
L
! 2
(L, +L, +L)u+NV |[u]’)u (13)

iu Viu+ Vy(x)u +By|ulu =

is used to explain the method. Here the operators L, =

1 -_1 -_1 2y =
2axx L)’ - 26)}' Lz - Zazz N(V ‘u‘ )lL -

V,(x) +,8d\u\2.

Letz=(pgoay Bny’
late the GP equation ( 13) into multisymplectic form

(1) with
R
0, 0] ' 0, 0,

we can reformu—

where I, and 0, are n x n identity matrix and zeros ma—

trix respectively and the Hamiltonian function
_ L 2, 2 >
S(z) = 2Wxy ) (p +q) +B(p +

i+ + )
By direct calculation one can find that the Cauchy

qZ)Z _(UZ +(1)2 +§02

problem of GP equation ( 13) with initial data u,(x)
admits the following two conservation laws:

* Mass invariant

Q1) = [, lu(X 1) |7ax =

Jou o0 12X = 0(0)

* Energy invariant

o()) = [ [ 5 IValX 0 12+ V00 lul®+

%\u\A]dXzs(O).

For this Hamiltonian system it is very difficult to
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establish practical Mls because of its inseparability. To
construct a practical numerical method with the charac—
ters of MIs we use LOD technique to split the GP e-
quation ( 13) into three locally one-dimensional

Schrodinger equations and a nonlinear Schriodinger e—

quation
i, =- %uw =Lu (14)
. 1
i, == —Su, = Lu (15)
. 1
w, == S, = Lu (16)

iw, = V(x y 2) +,8‘u‘2 u=NV |ul®)u
(17)
We can reformulate the LOD Schrodinger equa—
tions ( 14) ~(16) into the form of HS (1)

Jd - i)
Lz +L, >
J, 2 o

Ly = ViS(E) =123

wherex, = x x, =y 5, = zandz, = (p q v w) "'

2, =(pqge ) z3=(pq{mn) " with the Hamil-

tonian functions

$1(2) == (v +0)
$:(2) = (& +9)
$iz) == (& +m).

The nonlinear subproblem ( 17) degenerates to the
Hamiltonian formulation
da

i =4 VoH(Z) Yayz

where 2 = (p ¢)  and the Hamiltonian function is

H(2) =5 2wy ) (5 +q) +B7 +q)°
As a matter of fact the exact solution of this system is
w(x y z ") =exp(—i( V(x y2) +
Blulxyzt) 1)) ulxy =)

with the contribution of pointwise conservation law

lu(x yz6) | = lu(xyz0)|*> Vayzu
Therefore we can get an LOD-MI in the form

; ( u,il/z wt u;l/z W) = (Wi + Wn )

T/2
Suy =0 (18)

* % * *
i ( Wit Y W an 1)

* *
- ( Ui T U an z)

T7/2

+

Bfu;};c*H/Z — 0 (19)
* % % * % % * % * *
; ( Wi t Uy, 1+1/2) - ( Wi oip t Uy /+1/2) +
7/2
S =0 (20)
l;‘jkl = exp( - i( ijl + B ‘ u_,':z** 2) 7) uj:l** =
CXP( - iej:l**) uj:l** (21)
( l_L,'/f -1t L_l’j/r ) = ( L_”jk i-in L_l'jk 1412) +
7/2
Suy'”? =0 (22)
; ( ’2,' k-121 F l_tj pan) = ( L_l'j k-1t l_L,' k12 1)
T/2
Sy, =0 (23)
1 1 - -
; ( u;:rvz Wt u’;:l/Z w) = ( Uiipm T Uan 1)
T/2
Sy 17 =0 (24)
where u"*'? = %( w+u) u " o= %( u + u)
n°°°+1/2 — L(E_'_ un+|)
2

This scheme is of second order both in space and
time directions. Detailed numerical analysis of this
scheme can be found in 13 .

Next we use an example to demonstrate the feasi—
bility of our LOD-MI ( 18) ~(24) .

Example 2 In the example we investigate the
3D anisotropic condensate problem with changing

trapped frequency

. 1 1
i, =—7V2u+V(xyz)u+ﬁ\¢\z¢f
1/4

3/8(3xp( -2( o+ 2y2 + 4z2) )

P(x y 2 0) = () *

where Vi(x y 2) = %( ¥+ 4y’ +1677).

It is a 3D nonlinear problem. We can imagine that
one can not solve it by traditional MIs. We will not
make any comparison between them. We only use LOD-
MI (18) ~(24) to solve the model under the mesh
step sizeh = 0.16 7 = 0.01 . The profiles of the real
part and imaginary part of the wave function at z =
3.2 ¢t = 3 are shown in Fig. 1 and the residuals of

mass and local energy are presented in Fig. 2.
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Figure 1 The real and imaginary parts of the wave function. Left: real; Right: imaginary.
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Figure 2 The residuals of mass and local energy. Left: mass; Right: local energy.

It is observed from these figures we can find that
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