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Abstact: The analysis of correlations within pairs of survival times is of great interest to many researchers in biol—

ogy and medicine. The analysis objective is to investigate the association of bivariate survival data under the set—

ting of low-moderate percentage of censoring through Monte Carlo simulations using a copula approach. Here the

association of bivariate survival data is estimated using Spearman’s correlation coefficient. The results from simu—

lation studies show that when the percentage of censoring is low Gumbel-based estimation procedure is much

more robust and the stronger a positive association is the more accurate estimate can be obtained when the cen—

soring percentage is 0% and 30% . This is true for the Frank Gumbel and Clayton-based estimation procedures

under the condition that the copula assumption made here is the same as the true one.
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0 Introduction

In medical research it is useful for physicians to
know the correlation among pairs of survival times in
terms of prognosis patient care including treatment de—
cision making. For example early stage patients with
head and neck squamous cell carcinoma( HNSCC) are
at high risk of recurrence and having second primary
tumor after being treated and having an excellent prog—
nosis ' . The survival times during the second treatment
period in this special case are censored for some. It is
also of interest to get an accurate estimate for the corre—
lations of bivariate survival times under censoring in
general.

Here we are interested in the correlation between
the time until recurrence of the cancer during the first

application ( 7, Q,) and the time until the patient dies
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during the second application ( T, (Q,) . T, is the initial
desease free interval and T, is the overall survival after
the salvage surgery. To be more accurate T, is defined
as the minimum of ( X, C,) where X, is the time to re—
currence and C, is the censoring time independent of
X,. T, is defined as the minimum of ( X, C,) where X,
is the time to death and C, is the censoring time inde—
pendent of X,. Both (7, Q,) and (T, (,) are surviv—
al times under censoring where T, represents time to
the event or time to censoring and ), is a censoring in—
dicator. When the correlation of such survival times is a
concern the dependence of the two is mostly assumed
monotonic. Under this circumstance quantifying the
correlation using rank correlation coefficients instead of
using Pearson’s correlation coefficient seems more ap—
propriate >> . One of the popular rank correlation coef—
ficients is the Spearman’s rank-erder correlation coeffi—

cient( Spearman”s r,) . Most medical researchers are
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very familiar with Spearman’s r, and intuitively know
how "large" the correlation is when they get the result.

One method among other alternatives to get an ac—
curate estimation for the Spearman’s r_ in the setting of
bivariate survival times is to use maximum likelihood
estimation within common copulas a semiparametric
approach developed by J. H. Shih et al * . In this pa—
per we use a copula-based approach to evaluate the
correlation coefficient of bivariate survival times under
the setting of low-moderate percentage of censoring. By
making comparisons with other existing approaches we
find that the copula-based approach has advantages in
some aspects. In addition the results from simulation

studies provide significant references for physicians.
0.1 Three Common Measures of Association

Whether and how the variables of interest are re—
lated with each other is attractive for many investiga—
tors. Three commonly used indices are the Pearson
product moment correlation Spearman’ s rank-order
correlation and Kendall”s tau correlation. The Pearson
product moment correlation is commonly used to meas—
ure the association between two continuous variables
and often denoted as the Greek letter p. It ranges from
—1 to 1 and is calculated through dividing the covari—
ance of the two variables by the product of their stand—
ard deviations. A positive ratio indicates a positive line—
ar association and a negative ratio indicates a negative
linear association. When the ratio is zero it could indi-
cate either the absence of linear association or the ab-
sence of any kind of association depending on whether
the data have a bivariate normal distribution > . As for
the other two popular measures which are Spearman’s
rank-order correlation coefficient and Kendall” s tau
correlation coefficient they can be used for the associa—
tion between two ordinal or interval variables. Their ab—
solute values could indicate how strong and weak the
monotonic relationship between the two variables is © .
In medical studies with survival endpoints the estima—
ting method becomes more sophisticated due to censo—
ring. Under this circumstance many recent works have
demonstrated the advantages of using Kendall’s tau and
Spearman’s rank-erder correlation coefficient. The for—
mer is more easily generalized for censored data and
the latter could be innovatively adapted in censoring

cases by a semiparametric approach incorporating a

copula * .
0.2 Copula
It is Abe Sklar( 1959) who first used the word

a Latin noun meaning

copula a link tie

bond" ’

rem to describe the functions that " join together" one-

in the statistical world for the Sklar’s Theo—

dimensional distribution functions to form multivariate
distribution functions ® . Since then there have been
applications of copula in several fileds including medi-
cine finance engineering and climate research among
others. In this paper only bivariate versions of the cop—
ulas are considered. Thus informally if (X Y) is a
pair of continuous random variables with distribution
function H( x y) and marginal distributions F ( x) and

x

F (y) respectively then U =F (x) ~U(0 1) and
V=F (y) ~U(0 1) and the distribution function of
(U V) is a copula. Copulas can be used as very pow—
erful tools for modeling dependence between random
variables with their unique advantages like studying
non-inear dependence being able to measure depend—
ence for heavy tail distributions being able to study as—
ymptotic properties of dependence structures and flexi—
ble usage with parametric semi-parametric or non-par—
ametric assumption *” . Copulas also work well when
the random variables of interest represent the lifetimes
of observations with censoring in some population. In
this case the probability of an individual living beyond

time x is valued and always specified by the survival
function which is F = P(X>x) =1 -F(x) here F
denotes the cumulative distribution function of X. For a
pair (X Y) of random variables whose joint distribu—

tion is H the joint survival function can be given as

H(x y) =P(X >x Y >y). The margins of joint sur—

vival function are univariate survival functions F and

G. Assuming the copula of X and Y is C we can have
H(x y) =1-F(x) -G(x) +H(x y) =F(x) +

6(3) ~1+C(F(2) 6(y)) =F(2) +6(y) ~1+

C(1-F(x) 1-G(y)).

If a function é\:(u v) =u+v-1+C(1-u1-9)

could be defined from I” into I we then have ;I( xy) =

A _
C(F(x) G(y)).rI is the product I x I where I = 0

A
1 . The function C is a copula and referred as the sur—
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vival copula of X and Y * .
0.3 Maximum Likelihood Estimation for Spearman’s

r, within Common Copulas

Given a sample of n pairs of possibly censored
times (1, t,;) 1 <i<n and corresponding status in—
dicators ( Q,; Q,;) we can use the Nelson-Aalen meth—
od to get the probability of marginal survival function
S,(t,) k=1 2 at observed survival or censoring time
t,. Then we define u; =1 — S,(¢,;) and v; =1 —
S,( ;) and approximately they are all uniformly dis—
tributed. This transformation guarantees the use of cop—
ulas later because a copula is a mathematically well-
developed bivariate distribution and it needs its margin—
al distributions to be uniformly distributed. Since u, and
v; are uniformly distributed we can construct copula
Co(u v)

where 6 is dependence parameter. In this paper we will

after choosing a common type of copula

try four of the most commonly used copulas. They are
Gumbel Frank Clayton and Normal. The parameter
for the chosen copula can be estimated by maximum
likelihood estimation. After that Spearman’s r; can be
obtained by integration over the specified copula distri—
bution. Based on the explanation above we develop
four estimation procedures using R in which four differ—
ent copula assumptions that are Gumbel Normal Frank
and Clayton are made. The procedures develop based
on the properties of rank correlation ( here we consider
Kendall’s tau and Spearman’s r,) Both Kendall’s tau
(pr(X Y)) and Spearman’s r(p,(X Y)) can be ex—

pressed in terms of copulas as follows:

pr(XY) = 4J;J';C( uv)dC(u v) -1

p (X Y) = IZI(IJ;{ Clu v) - uv}dudo.

1 Data Set Description

We applied the methods and the procedures devel—
oped to two well-known publically available data sets
which are Diabetic retinopathy ' and Infections under
dialysis "' . The Diabetic retinopathy analysis contains
a sample of 197 paired survival times because both
eyes of an individual are observed at the same time and
it is of interest to know how times to blindness of a

treated and an untreated eye correlated with each other

when the patient had diabetic retinopathy ' . The in—
fections under dialysis analysis focuses on whether and
how time until infection of the first application of a
portable dialysis machine correlates with the time until
infection of the second application. This data set is of
38 patients with their times until infection of the two
time periods and corresponding censoring indicators.
The indicator 1 means the event infection occurred and
the indicator O means the catheter is removed because
of other reasons than infection so that the time to infec—
tion is censored. There are 23 patients having both un—
censored times 20 patients have one censored time and

11

3 patients have both censored times = . The censoring

percentage is 24% .

2 Approach

2.1 Spearman’s r, Diabetic Retinopathy and In-
fections under Dialysis Analysis

Again given a sample of n pairs of possibly cen-
sored times (¢, ¢,;) 1<i<n and corresponding sta—
tus indicators ( Q,; Q,;) we can use the Nelson-Aalen
method to get the probability of survival S,(¢#,) k=1
2 at observed survival or censoring times ¢,. The R
function used to get the Nelson-Aalen estimator is base—
haz function from R survival package as the Breslow
hazard estimator for a Cox model can be reduced to the
Nelson-Aalen estimator when there are no covariates.
The relationship used to get the probability of survival
is S(t) =exp( —H(t)) where H(t) is called the in—
tegrated or cumulative hazard * . Then we get u; and v,
by using the definition u; =1 — S,(¢,) and v, =1 —
S,( t,) . The corresponding censored information for u;
and v, is the same as the censored indicator which are
Q,; and Q,,. Both u, and v, are all uniformly distributed.

After getting data pairs (u; »;) with their corre—
sponding censored information ( Q,; (,;) we construc—
ted a R function for the ( pseudo likelihood of the
copula parameter . The likelihood of the copula pa-—
rameter 6 is different according to the chosen copula
C,(u v) ° . Four common types of copulas i. e. Clay—
ton Frank Gumbel and Normal were considered in this
application.

The distribution function of the chosen copula and
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its derivatives are used to express the ( pseudo-) likeli—
hood defined in M. Schemper et al’s paper and their
technical report * .

In order to get the maximum likelihood estimator
( MLE) for @ which could realize the maximum value of
the ( pseudo) likelihood we use the R general-purpose
optimization function optim and chose the option
"SANN" as the method under the condition that our
chosen copula is Clayton and Gumbel. The method
"SANN" is by default a variant of simulated annealing
and very useful in getting to a good value on a rough
surface " . As for the Frank copula the method speci—
fied in the option is " BFGS" a quasi-Newton method
which is published simultaneously in 1970 by Broyden
Fletcher Goldfarb and Shanno "“'° . The above ap—
proach didnt fit for the Normal Copula. A self-coded R
function for the ( pseudo likelihood of the Normal
Copula is thus prepared and a customized while loop
was used to get @ which could ensure the maximum val-
ue of the prepared likelihood.

The last step is to get Spearman”s r, through ( nu—
merical) integration over the chosen copula’s distribu—

tion function by inserting the estimated copula parame—
1

ter @ in the equation: r, = IZJ f C,(u v) dudv - 3.
0o

For Clayton Gumbel and Frank copulas the two-fold
integration can be accomplished by using a custom—
constructed R function. However it is different to get
the r, by integration over the normal copula because the
problem is about a fourHfold integration and all four
folds are on lines ( not regions) . A Monte Carlo simula—
tion approach was implemented in this case.

For the confidence interval there are five kinds of
confidence intervals based on the bootstrap method.
They are bootstrap- interval standard normal interval
percentile interval bias corrected and accelerated inter—
val and approximate bootstrap confidence interval.
Among them the percentile interval was chosen be—
cause it has both a transformation—respecting property
and a range-preserving property. The range—preserving
property is desirable since the values of r, lie in the in—
-11 7.

In order to know which estimation procedure is the

terval

optimal among 4 copulas for each application A,, value

is calculated as follows % .

A, =2K - 2In L where K is the number of esti—
mated parameters which is one and L is the ( pseudo-)
likelihood value calculated based on the principles il—

lustrated before.
2.2 Simulation Study

In order to evaluate our four proposed estimation
procedures above we carried out a series of simulation
studies.

Simulation study 1:

Using the package copula in R we firstly generate
1<<i<1 000. The func-

tion m,, () could be used to define a multivariate dis—

1 000 pairs of times ( ¢,; i)

tribution with given margins. Within that function we
could specify the copula type using the option copula
and assign values to the parameters both of the bivari—
ate copula and of its corresponding margins * . The re—

sult returned is an m,, object. After generating 1 000

vde
pairs of times as realizations of random variables T, and
T, which are unit exponentially distributed. However

and V =

exp( —7T,) is a bivariate normal copula with U and V

the joint distribution of U = exp( - T,)

uniformly distributed. By changing the option accord—
ingly four bivariate copulas are used: Normal Clayton
Frank and Gumbel. And 1 000 pairs of times are gen—
erated respectively.

Since our aim is to illustrate how our four estima—
tion procedures will perform under the influence of low—
moderate percentage of censoring we use the method
mentioned in M. Schemper et al’s paper which is as—
suming pairs of individuals to enter the study at a con—
stant rate ° . Thus we assume pairs of individuals went
into study constantly during the time period (0 m) .
Under this assumption follow-up times O will be uni—
formly distributed in (O m) . Then we use function run
if to generate 1 000 data pairs. If O, < T, or O, < T,
then censoring indicators are defined. We specify the
value m in each simulation in order to achieve the over—
all censoring proportions of 0% and 30% .

By using the principles above for each combina—
tion of underlying copula underlying Spearman’s r, and
censoring percentage 1 000 pairs of times (¢, #,,)
1<i<<1 000 and their corresponding censoring indica—
tors were generated. There are 36 combinations in to—

tal. For example the first combination is underlying
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Normal Copula underlying Spearman’s r, of 0. 00 and
the underlying percentage of censoring of 0% . Four
proposed estimation procedures are then used to get the
estimated Spearman”s r, denoted as NCE FCE CCE
and GCE for normal Frank Clayton and Gumbel copu—
la estimations respectively.

Secondly for each combination of underlying cop-
ula underlying Spearman”s r, and censoring percent—
1<i<1 000 and

their corresponding censoring indicators were genera—

age 5 000 pairs of times ( t,; t,;)

ted. Four proposed estimation procedures are used to
get the estimated Spearman’s r, again and denoted as
NCE FCE CCE and GCE.

Simulation study 2:

Compared with simulation study 1 for each combi—
nation of underlying copula underlying Spearman’s r,
and censoring percentage instead of using a single
sample of n =1 000 or 5 000 pairs of times. We simula—
ted 1 000 samples with n =50 and n =200 separately.
The sample mean for the r_ is used as the point estima—
tor and the confidence interval is calculated as

(X£t_,(n-1)s//n) .

Here s is the sample standard deviation.

3 Results

Table 1 summarizes all point estimates of the
Spearman’s r, for the two well-known data sets based
on the estimation assuming Normal Frank Clayton and
Gumbel copulas respectively and is also a summary of
all 95% confidence intervals using percentile interval
based on bootstrap method. From the results of the two
well-known data sets our normal-based estimation pro—
cedure tends to have a larger 95% confidence interval
and a lower biased estimate than the other three estima—
tion procedures.

Table 2 and table 3 deliver the estimates of
Spearman’s r, for each simulated single sample genera—
ted with both known underlying copula structure and
known underlying r, value in addition to the percentage
of censoring. By comparing the true underlying r, value
with the estimates we could have a general idea to
evaluate how the four proposed estimation procedures

perform when the underlying copula strucuture are Nor—

mal Frank Clayton and Gumbel. In other words if the
data set we got had one of this four copula structures
after model selection and testing we could know how
the corresponding proposed estimation procedure would
perform by taking the percentage of censoring into ac—
count. After observing table 2 and table 3 together we
found that our Normal copula-based estimation proce—
dure always gave a downward estimate. By looking at
table 2 alone it is hard to tell how the proposed estima—
tion procedures perform. However when the sample
size increased to 5 000 time pairs ( table 3) there is a
trend that if the copula assumption is just the same as
the underlying copula structure the estimate using that
copula estimation procedure would be the most accurate
one. This situation is true but there were a few excep-—
tions happened because we only conduct one single
sample. Table 3 illustrates that when the underlying
copula structure is Frank Clayton or Gumbel normal-
based copula estimation procedure would never give a
better estimate compared with the other three. In addi-
tion normal-based copula estimation procedure took
much more time to get the estimate compared with the
other three copula-based estimation procedures.

Table 4 illustrates the results for the estimates of
Spearman’s r, by maximum likelihood estimators using
three estimation procedures and four different types of
underlying copulas based on 1 000 samples of sample
size 50 and 200 under the various censoring condi—
tions. It”s ideal to get the data without censoring ( i. e.
0% censoring) . In this case no censored information
could be fog the true underlying copula structure. Our
Frank-based estimation procedure perfoms well for data
from Frank copula except when the Spearman’s r, is
around zero because under this condition the estimate
we got was upward biased. For data from Clayton copu—
la Clayton-based estimation procedure produced up-—
ward biased estimates no matter what the true underly—
ing Spearman’s r, were. Gumbel-based estimation pro—
cedure is more likely to get downward biased estimates
when the Spearman’s r, is around zero for the data from
Gumbel copula. There is a trend that when the true un—
derlying Spearman’s r increase the mean squared error

( MSE) decreases under the condition that we choose
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the right copula-based estimation procedure which condition that the censoring percentage is 30% . Frank-
means the copula assumption we made is the same as based estimation procedure tent to have downward bi-
the true one. The same thing happens when the per— ased estimates for Frank-distributed data except when
centage of censoring is 30% . This illustrates that copula— the underlying Spearman”s r_ is around zero. Gumbel-
based estimation procedure performs well especially when based estimation procedure is less sensible to the cen—
a strong positive association exists ( tables 5 table 6) . soring and could perform well under 30% .

Table 4 also demonstrates the results under the

Table 1 Estimates of r, by the Maximum Likelihood Copula Estimators for Three Studies

study NCE FCE CCE GCE
Diabetic retinopathy 0.26 0.37 0.22 0.42
95% CI (0.12 0.59) (0.18 0.55) (0.08 0.36) (0.21 0.60)
Infections under dialysis 0.26 0.34 0.32 0.34
95% CI ( -0.04 0.70) (0.00 0.63) (0.04 0.59) ( -0.25 0.55)

Note: NCE FCE CCE and GCE denote estimation assuming underlying Normal Frank Clayton and Gumbel copulas respectively.
CI denotes confidence interval. All our 95% confidence interval estimates are percentile interval based on 1 000 bootstrap samples.

Table 2 Estimates of r, by Maximum Likelihood Estimators Assuming Various Copulas Using a Single Sample of » =1 000

Underlying Underlying 0% censoring 30% censoring

Copula T NCE FCE CCE GCE NCE FCE CCE GCE
0.000 -0.021 0.070 0.053 0.050 -0.047 0.045 0.053 0.044
Normal 0.300 0.265 0.363 0.361 0.316 0.230 0.321 0.327 0.331
0.600 0.562 0.668 0.648 0.617 0.545 0.640 0.584 0.665
0.000 -0.077 0.020 -0.002  -0.006 -0.085 0.011 0.005 -0.003
Frank 0.300 0.163 0.284 0.293 0.220 0.148 0.255 0.291 0.246
0.600 0.442 0.593 0.621 0.504 0.436 0.561 0.562 0.566
0.000 -0.025 0.060 0.061 0.032 -0.030 0.048 0.055 0.041
Clayton 0.300 0.248 0.337 0.338 0.270 0.267 0.321 0.322 0.330
0.600 0.509 0.631 0.623 0.534 0.569 0.623 0.605 0.654
0.000 -0.032 0.063 0.088 0.033 -0.052 0.039 0.121 0.015
Gumbel 0.300 0.224 0.323 0.347 0.291 0.203 0.294 0.322 0.308
0.600 0.502 0.615 0.613 0.584 0.452 0.550 0.533 0.576

Table 3 Estimates of r, by Maximum Likelihood Estimators Assuming Various Copulas Using a Single Sample of » =5 000

Underlying 0% censoring 30% censoring

Copula " NCE FCE CCE GCE NCE FCE CCE GCE
0. 000 0.008 0.099 0.098 0.073 0.001 0.088 0.101 0.095

Normal 0.300 0.289 0.387 0.401 0.341 0.275 0.362 0.368 0.380
0. 600 0.578 0.684 0.661 0.634 0.567 0.658 0. 604 0. 685
0.000 -0.054 0.042 0.030 0.031 -0.065 0.029 0.030 0.028

Frank 0.300 0.181 0.304 0.323 0.246 0.174 0.281 0.284 0.282
0. 600 0.455 0.604 0.641 0.518 0.456 0.581 0.571 0.589
0.000 -0.049 0.037 0.040 0.027 -0.056 0.026 0.037 0.024

Clayton 0.300 0.222 0.311 0.313 0.250 0.243 0.302 0.304 0.314
0. 600 0.494 0.613 0. 606 0.516 0.552 0.610 0.591 0. 640
0.000 -0.067 0.022 0.025 0.017 -0.071 0.015 0.041 0.014

Gumbel 0.300 0.212 0.304 0.290 0.302 0.167 0.264 0.242 0.285
0. 600 0.500 0.612 0.603 0.601 0.451 0.564 0.508 0.590
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Table 4 Point Estimates and 95% Confidence Interval Assuming Three Copulas under Various Percentage of Censoring

0% censoring

30% censoring

n =50 n =50
T, FCE CCE GCE FCE CCE GCE
0.00  0.10(0.10 0.11)  0.19(0.18 0.20)  0.05(0.04 0.06) 0.10(0.09 0.11)  0.22(0.21 0.24)  0.09(0.08 0. 10)
NC 0.30 0.38(0.38 0.39) 0.45(0.44 0.46)  0.34(0.33 0.35) 0.37(0.36 0.38)  0.44(0.43 0.45)  0.39(0.38 0.40)
0.60 0.68(0.67 0.68) 0.69(0.69 0.70)  0.63(0.62 0.64) 0.66(0.66 0.67) 0.66(0.65 0.66) 0.69(0.69 0.70)
0.00  0.04(0.03 0.05) 0.15(0.14 0.16) -0.01( —=0.02 0.01)  0.04(0.03 0.05)  0.20(0.19 0.21)  0.03(0.02 0.04)
FC  0.30 0.30(0.29 0.31) 0.37(0.36 0.38)  0.25(0.24 0.26) 0.29(0.28 0.30)  0.37(0.36 0.38)  0.30(0.29 0.31)
0.60  0.60(0.59 0.60) 0.63(0.63 0.64) 0.53(0.52 0.53) 0.58(0.58 0.59)  0.59(0.58 0.60)  0.60(0.60 0.61)
0.00  0.04(0.03 0.05) 0.09(0.09 0.10) —0.02( —=0.03 -0.01) 0.04(0.03 0.05) 0.10(0.09 0.10)  0.02(0.01 0.04)
CC 0.30  0.31(0.30 0.32)  0.34(0.33 0.34)  0.24(0.23 0.24) 0.31(0.30 0.32)  0.33(0.32 0.34)  0.31(0.30 0.33)
0.60  0.60(0.60 0.61) 0.61(0.61 0.62) 0.51(0.50 0.52) 0.62(0.61 0.62)  0.60(0.60 0.61)  0.64(0.63 0.65)
0.00  0.02(0.01 0.03) 0.13(0.12 0.14) =0.03( -=0.05 -0.02) 0.01(0.00 0.02) 0.18(0.17 0.19) 0.00( —0.01 0.01)
GC  0.30  0.31(0.30 0.31)  0.37(0.35 0.38)  0.30(0.29 0.31) 0.28(0.27 0.29)  0.35(0.34 0.36)  0.31(0.30 0.32)
0.60  0.60(0.60 0.61) 0.63(0.63 0.64) 0.59(0.58 0.60) 0.57(0.56 0.57) 0.57(0.56 0.58) 0.60(0.59 0.61)
0% censoring 30% censoring
n =200 n =200
T, FCE CCE GCE FCE CCE GCE
0.00 0.10(0.09 0.10)  0.11(0.11 0.12)  0.07(0.07 0.07) 0.09(0.09 0.10)  0.12(0.11 0.13)  0.09(0.09 0.10)
NC 0.30 0.39(0.38 0.39) 0.42(0.42 0.42)  0.34(0.34 0.34) 0.37(0.36 0.37)  0.39(0.39 0.40)  0.38(0.38 0.39)
0.60 0.68(0.68 0.68) 0.67(0.67 0.68) 0.63(0.63 0.64) 0.66(0.66 0.67) 0.62(0.62 0.63) 0.69(0.69 0.69)
0.00  0.04(0.04 0.04) 0.05(0.05 0.06) 0.01(0.01 0.02) 0.04(0.03 0.04) 0.07(0.06 0.07)  0.04(0.03 0.04)
FC  0.30  0.30(0.30 0.31) 0.33(0.33 0.34)  0.24(0.24 0.25) 0.29(0.28 0.29)  0.32(0.31 0.32)  0.29(0.28 0.29)
0.60  0.60(0.60 0.60) 0.62(0.62 0.62) 0.52(0.52 0.52) 0.58(0.58 0.58)  0.57(0.56 0.57)  0.59(0.59 0.60)
0.00  0.04(0.03 0.04) 0.04(0.04 0.05) 0.01(0.01 0.02) 0.04(0.04 0.04)  0.04(0.04 0.05)  0.03(0.03 0.04)
CC 0.30 0.31(0.31 0.31) 0.32(0.31 0.32) 0.24(0.24 0.25) 0.31(0.31 0.32)  0.31(0.31 0.31) 0.32(0.31 0.32)
0.60 0.61(0.61 0.61) 0.60(0.60 0.61) 0.51(0.51 0.51) 0.62(0.61 0.62) 0.59(0.59 0.59)  0.64(0.64 0.64)
0.00  0.01(0.01 0.02) 0.03(0.03 0.04) 0.00( —0.00 0.00)  0.01(0.01 0.02) 0.05(0.04 0.05) 0.01(0.01 0.02)
GC  0.30  0.31(0.30 0.31)  0.32(0.31 0.32)  0.30(0.30 0.31) 0.28(0.27 0.28)  0.28(0.27 0.28)  0.30(0.29 0.30)
0.60  0.61(0.61 0.61) 0.61(0.61 0.62) 0.60(0.60 0.60) 0.57(0.57 0.57)  0.54(0.53 0.54) 0.60(0.59 0.60)
Table 5 Mean Squared Error ( MSE) Assuming Three Copula Types
Underlying 0% Censoring 30% Censoring

Copula E FCE CCE GCE FCE CCE GCE

0.0 0.029 0.061 0.027 0.032 0.089 0.034

Normal 0.3 0.022 0.042 0.015 0.023 0.045 0.025

0.6 0.012 0.017 0.007 0.012 0.015 0.014

0.0 0.024 0.049 0.028 0.027 0.074 0.029

Frank 0.3 0.019 0.032 0.020 0.022 0.038 0.022

0.6 0.010 0.013 0.014 0.014 0.017 0.011

0.0 0.023 0.021 0.031 0.027 0.022 0.029

Clayton 0.3 0.019 0.016 0.023 0.023 0.017 0.025

0.6 0.011 0.008 0.018 0.013 0.009 0.014

0.0 0.022 0.038 0.033 0.026 0.069 0.032

Gumbel 0.3 0.020 0.032 0.018 0.024 0.037 0.022

0.6 0.010 0.015 0.010 0.015 0.021 0.011

4 Conclusion

From our simulation study our normal-based esti—
mation procedure always tends to have downward bi-—
ased estimates when the underlying copula structure is

Normal Clayton Gumbel and Frank. When the per—

centage of censoring increases to 30% all the four esti—
mation procedures tend to get less accurate estimates
comparing to the setting of 0% censoring when the un—
derlying copula structure are Normal Clayton Frank
and Gumebl. However Gumbel-based estimation proce—
dure is much more robust for data from Gumbel copula

in terms of percentage of censoring. Finally we also
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found that Frank Gumebl and Clayton-based estima—
tion procedures perfom better with the increase of a

positive association under the condition that we choose

the right copula-based estimation procedure which
means the copula assumption we made is the same as

the true one.

Table 6 Mean Squared Error ( MSE) Assuming Three Copula Types

Underlying 0% Censoring 30% Censoring

Copula K FCE CCE GCE FCE CCE GCE
0.0 0.014 0.020 0.009 0.014 0.025 0.013

Normal 0.3 0.011 0.019 0.005 0.009 0.015 0.010
0.6 0.008 0.007 0.003 0. 006 0.004 0.009

0.0 0.007 0.009 0.005 0.007 0.013 0.007

Frank 0.3 0.004 0.008 0.007 0.005 0.010 0. 005
0.6 0.002 0.004 0.009 0.003 0. 006 0.003

0.0 0.007 0.005 0.005 0.007 0.005 0.006

Clayton 0.3 0.004 0.004 0.007 0.005 0.004 0. 006
0.6 0.002 0.002 0.010 0.003 0.002 0.004

0.0 0.005 0.007 0.005 0. 006 0.010 0.006

Gumbel 0.3 0.005 0.008 0.004 0. 006 0.011 0. 005
0.6 0.003 0.005 0.002 0.004 0.010 0.003

5 Discussion

In the real application it would not be appropriate
to use our four suggested copula based estimation pro—
cedures to get the estimate with knowning that the data
comes from another copula distribution rather than Nor—
mal Clayton Gumbel and Frank. Thus a nonparametric
indentification of the copula structure is in demand * .

Moreover when the sample size is small discord—
ances between two pairs of time period will appear even
though the true relationship is concordant because of
the variability of the observations obtained from a con—
Under  this

Pearson’s correlation coefficient can fully make use of

tinuous  distribution. condition  only
this information. Relative statistical power got from per—
mutation test can be used to illustrate the ability to
show the degree of discordances

For the simulation part we only considered the
setting of low-moderate percentage of censoring ( i. e.
0% 30%) of the total survival times. And we didn”t
study in details whether the first part of the bivariate
survival times contains more censored observations. It
would be valuable to test other patterns of censoring
percentage and to study further and test with different

distribution of the censored observations among the two

time periods as well as the performace of those proce—

dures under relatively high percentage of censoring.

All the data used in our simulation study were
generated from a bivariate distribution with unit expo—
nential margins and four types of copula respectively. In
further studies we could examine data generated from
various other types of marginal distributions such as the
Weibull logdogistic gamma and log-normal in order to
get a more generalized conclusion.

For the normal based copula estimation takes
much more time than it does for the other three. Find—
ing ways to increase the efficiency of the calculation
and estimation would be an important topic to explore
in future research.

Furthermore it would be highly interesting to
study whether ( 7, Q,) could be used to predict ( 7T,
Q,) instead of just knowing the correlation between

the two.
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