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Abstract: By using value distribution theory in heigh dimensional spaces special functions and classic ordinary

differiantial equations some homogenius linear partial differiantial equations of second order are studied by char—

acterizing entire solutions related closely products of special functions and a new direction of partial differential

equations is enhibited.
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0 Introduction and Main Results

Hilbert’s 19th problem conjectures that if all coef—
ficients a, =a,(t z) of the following homogeneous lin—
ear partial differential equations of the second order in
two independent real variables ¢ and z

%+2 g—g+a2%+a3%+a4g—+a6u 0 (1)
are analytic on ¢ and z then any solution u =u(t z) of
an elliptic equation of the form (1) also is analytic on
its existing region which was confirmed by S. N.

After

Kowalewski’s existence theorem H. Lewy °

Bernstein ' being influenced by Cauchy-
gave a
simple proof by extending ¢ and z to a domain of C’.
By substituting polar coordinates
p=a+y 7=(a" =y") /(a7 +Y)
in the partial differential equation

aU U 4,u+laU 4v+1 9U

+k 4) -
0% ayz x ax y 9y
k(x> +y) U=0 (2)
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P. Henrici * changed the equation (2) into the form

2

231} 2y 070 v

—+(1-7") S5 +2(pu+v+l)p—+2 p-
P 0 ( T)aTz (n )pap 7
-(u+v+1) 7 %+kp(/\—%ﬂ)vzo

and then by the usual separation method v(p 7) =
R(p) T(7) found that R(p) and T(7) have to satisfy

separately the equations

d&’R 1 dR s kA K
+2(u+v+1)— +( -5 +—=--—)R=0 (3)

g pdo g p 4

and

+2 u-v—(u+v+l)7 37T+ST 0 (4

separation parameter. Writing s = n( 2u +

(1 )

where s is a

2v+n+1) he found that solutions of (3) which are
regular near p =0 are represented for n =0 1 2 -+ by
R(p) =p ™" 'M, i1 0n hp)

where M denotes the Whittaker function of the first
kind while (4) has for the same values of s the Jacobi
polynomial solution T( 7) =P!** () in the notation

of G. Szegp *

and further studied some analytic prop—

( ZR2018MAO14) (2017JC019)
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erties of the functions
u(t z) =R(zt) T( (2 +1°) /(2z))
considered as functions of the two complex variables

z=x+1iy and t = x — iy which satisfy the differential

equation
2
M+2H+1/2{@+@} _2v+1/2{@_@}+
otoz z+1 0z dt z—t ~dz Ot
k(/\—%)uzo.

Several authors ** studied basic properties and
characterization of meromorphic solutions on first-order
partial differential equations ( or system) . Recently

we °* study entire ( or meromorphic)

solutions of
homogeneous linear partial differential equations ( 1) of
the second order in two independent complex variables
¢t and z where a, =a,(t z) are holomorphic functions
for (¢t z) € 3 in which ¥ is a region on C*.

Here we will characterize analytic solutions for a

series of special cases of (1) . For simple we focus on

entire solutions of these kind of equations.

1 Series Expansions Involving Jacobi
Polynomials

First of all we make some remarks for Jacobi pol-
ynomials. For complex numbers a b ¢ € C the hyper—
geometric function is defined by the Gauss series ( or

hypergeometric series)

. . . - ( a) ﬂ( b) n n
F(a,b,c,z) = ;WZ
which is convergent when |z] <1 and satisfies Gaussi—

an differential equation
2

(1= e (arb+1) 3 =0 (5)
dz dz

where («) , is Pochhammer’s symbol
ala+1) (a+n-1) n=l
(o), ={ g
1 n=0.
The equation (5) also has the solution
2 Fla+l—c b+1-¢2-¢,2).
By using the transformation z = (1 —¢) /2 and setting
a=-nb=a+B+n+1 c=a+1 one transfers the
(5) into the form
(1-2) dv/dt> ~{a-B+(a+B+2)t}dv/dt +
n(a+B+n+1)v=0

with solutions

PP () =(a+1) F( —n a+B+n+1;a+l;

(1-1)/2) /n!

QP () =((1-0/2) "F( ~n-a B+n+1;
1 -a;(1-1)/2).

G. Darboux " obtained an asymptotic formula

P (1) =PP (1) 020 () {1457 (0} (6)
for n=1 where w(t) is the inverse of Zukowski trans—
formation ¢t = (@ + ') /2 for which w( ®©) = o
PP (1) #0 and {p'“? (1) } 7_, are analytic functions
-11

limp'*# (1) =0 uniformly on every compact subset of

holomorphic in the region C - and such that

this region.
For the case o B> —1 the corresponding func—

tions of second kind { Q'*? (1) } *_, can be defined in

the region C - -1 1
QP (1) :_f(l —O 1+ PPEP ()

1 -1
n=012 -
which satisfy the following asymptotic formula:
QP (1) =0 () n 0™ () {1+q," 7 ()} (7)
for n=1 where Q““? (1) #0 and {¢'*? (1)} *_, are
-1 1 such

that limg'*# (¢) =0 uniformly on every compact sub—

by the equalities

d

holomorphic functions in the region C -

set of this region * .

Further if 1 <r <o we denote by E( r) the inte—
rior of the ellipse y(r) ={teC/||w(t) | =7} and we
assume by definition that E( «) = C. Basing on Christ—
offel Darboux formula for Jacobi polynomials and func—
tions of second kind *
(6) and (7)
gral formula leads to the following result

Theorem 1 leta 8> -1 1 <R<<o and let f
be a holomorphic function in the region E( R) . Then f

and on the asymptotic formulas

a trivial application of the Cauchy inte—
1548 .

can be represented in this region by a series

A2 = S aPen (s

n=0

with the coefficients

1 (ap)
- =012 -

W =y ] SO O D
for 1 <r <R where

](aﬁ) —

2P ' IMn+a+1)T(n+p+1) n=1
(2n+a+B+1)T(n+1)T(n+a+B+1)
2" T (a+ 1) T(B+1) 120

INa+B+2)
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Moreover P. Rusev '’ remarked that Theorem 1

is valid also for Jacobi polynomials of arbitrary complex

numbers « B such that « B a +B# -1 -2
+ 2% In the sequel we will use Jacobi polynomials

of this kind of parameters o 8.
1.1 Products of Jacobi Polynomials

Here we consider the following partial differential
equation

(1-2)du/or’ —=(1-2) du/oz —{a-B+(a+
B+2)t}ou/dt+{pmw-v+(um+v+2)z}du/dz=0 (8)
with u +v=a +B where a B (resp. u v) satisfy ex—
pansion conditions of analytic functions ( see Theorem
1 and the remark after it) .

By using the usual separation method u( ¢ z) =
v( 1) w( z)

rately the equations

then v(t) and w(z) have to satisfy sepa—

2

(-1 o ga(a+p+2)t Yiw=-0 (9
de de

and
d*w dw

(1-2°) e w-v+(u+v+2)z E+sw:0 (10)

where s is a separation parameter. Writing s = n( o +

B +n+1) the solutions of (9) which are regular near
by v(11) =
PP (1) while (10) has for the same values of s the

t =0 are represented for n =0 1 2 -

Jacobi polynomial solution w (z) = P*” (z) and
hence ( 8) have polynomial solutions w (¢t z) =
PP (1) P (2) for each n =0 1 2 ++-. Generally
speaking the following result characterizes all entire

solutions of ( 8) .
Theorem 2 The partial differential equation ( 8)
has an entire solution f{ ¢ z) on C if and only if f{ ¢

z) is an entire function on C” expressed by

= Y ¢, PP (1) PV (2) (11)
n=0
=0.

St 2)

n—o

Proof Let f{¢ z) be an entire solution of ( 8) .

For any t € C we obtain an entire function f;( z) =f{t

. RREET]
z) on z e C which has a Neumann expansion

v,(1) P (2)

such that

v, (1) [ =0. (12)
Set pop(t) =a-B+(a+B+2)1t

lim
e

s=n(a+B+

n+1) . Since f{ ¢t z) is a solution of (8) we find

o:(1—t2)a—t{-(1_zz)ﬂ_ FOR

822 p ot
af d*v, (1) dv, (1)
Pz Z{ (1-¢) 1 Pesl) T
dZP(,u v)
w()) PR (D)~ a(((1 - ) T
dz
AP (2)
pa() S P ()
which means
(1-2) d%, (1) 7de’ —pap(t) dv,(t) /dt +sv,(1) =0.

Therefore there exists constants ¢, d, such that
v,(1) =¢,P\*P (1) +d,Q\*P (1) .Note that v, (1) are

entire functions so that d, =0 and hence

z c, P
By using asymptotic formula of P{*#
ly find

hm ‘P“B)

0P ().

(t) we easi—

e R

and hence the condition ( 12) may be replaced by
liI;rll sup le, | =0.
Conversely it is easy to check that the entire func—
tion defined by ( 11) satisfies ( 8) .
Remark 1 The partial differential equation ( 8)
have meromorphic solutions. For example let P, () =
P7 (1) be the Legendre’s polynomial of degree n

and let Q,(¢) be the Legendre’s function of second
kind of degree n. Then

o

1/(z-1) = Z(2n+1)Qn(z)Pn(z)

n=0
is a solution of (8) with a =8=u=v=0.
1.2 Products of Legendre’s Polynomials and Bes—
sel Polynomials

We consider the following partial differential equa-

tion
2 2
2 du 20 U Ju Ju
— +(1- 2t +2) — -2z — =0. 13
tat2+( z)azz+(t+)al zaz (13)

By using the usual separation method u(t z) =
v(£) w(z) then v(¢) and w(z) have to satisfy sepa—
rately the equations

£d*/de® + (2t +2) dv/dt —sv =0 (14)
and

(1-2") d*w/dz” —=2zdw/dz + sw =0 (15)

where s is a separation parameter. Writing s = n( n +
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1) the solutions of ( 14) which are regular near t =0

are represented forn =0 1 2 -+ by the Bessel polyno—

mials

_ .o . ( n + k) ! k
while ( 15) has for the same values of s the Legendre
polynomial solution w(z) =P°? (z): =P, (z) and

hence (13) have polynomial solutions u(¢ z) =y,(t) *
P, (z) foreachn=01 2
following result characterizes all entire solutions of
(13).

Theorem 3

-++. Generally speaking the

The partial differential equation
(13) has an entire solution f{ ¢ z) on C”if and only if
St z) is an entire function on C expressed by

©

c

A =3 S0 p() (16)
n=0 -
such that
lim sup | ¢, | =0. (17)

n—

Proof Let f{¢ z) be an entire solution of ( 13) .
For any t € C the entire function f,(z) =f(t z) onze

C has a Neumann expansion "** f(z) = Z v, (1) *

n=0
v, (1)

Since f{ ¢ z) is a solution of ( 13) we find

1/n :0.

P,(2) such that lim sup

n

2

2 2
0= 1o e Lo ¥
o o 2 a

o -
S{(¢ dzfi’;(f) e P
D) P+ e (1= TP
Zz%m(n +1)P(2))]}
which means
tz dztl”t(zt) +(2t+2) dv"d(tt) —n(n+1)v,(1) =0.

Therefore there exists constants ¢, d, such that

v’l( L) :cnyn( z) /nl

is second independent solution of ( 14) with s =n( n +

2/t

+dey ( —1) where ey ( —1)

1) . Note that v,( ¢) are entire functions so that d, =0

and hence

®©

c

f(2) = 3“0 P(4).

n
n=0 n!

Asymptotic properties of Bessel polynomials were
2122 . It was shown there
that for fixed ¢t #0 and n—o

considered already in

2"n!

If one uses Stirling’s formula for the factorials this

|
y,,( t) (2n) . tnel/t.

is seen to be equivalent to

(1) ~¥2(2nt/e) "',

Moreover for n >1

(Zn) I n 1/t (2n) I n 1/t
vl1) - 2"n! rer | <K.(1) 2"n! e
where
B 1 RERVANIRY
Kn(t) _4(n_1) tZe .
Therefore

lim sup /c,y, (1) /n! =2|t|lim sup /¢, |.
Thus (17) follows.
Conversely it is easy to check that the entire func—

tion defined by ( 16) satisfies ( 13) .

2 Series Expansions Involving Bessel
Polynomials

We consider the following partial differential equa—
tion
2?—z2$+(2t+2)?j—(2z+2)gz=0. (18)
By using the usual separation method u( ¢ z) =v(1) °
w( z) we easily find that ( 18) have polynomial solu—
tions u(t z) =y,(t)y,(z) for eachn=01 2 -
Generally speaking the following result characterizes
all entire solutions of ( 18) .

Theorem 4  The partial differential equation
(18) has an entire solution f{ # z) on C if and only if

flt z) is an entire function on C” expressed by

©

c/l
ﬂt Z) = z 1 Zyn( t) yn(z) (19)
n=0 ( n: )
such that
lim sup |¢ |'" = 0. (20)

Proof Let f{¢ z) be an entire solution of ( 18) .

For any ¢ € C the entire function f,(z) =f(t z) onze

. 1623
C has a Neumann expansion

= n!
v (1) [V =0.
Since f( ¢ z) is a solution of ( 18)
the method in Section 1 we find that v,( ¢) satisfy

such that lim sup

according to
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2 dzvn(2 t) (20+2) dv, (1) C(n 1) u(1) =0. and characterizes all entire solutions of (22) as fol—-
dt de lows:
Therefore there exists constants ¢, d, such that v, () = Theorem 6  The partial differential equation
¢,y (1) /nt +d, ey ( —t).Note that v,(t) are en— (22) has an entire solution f{ # z) on C* if and only if

tire functions so that d, =0 and hence

fi(2) =

©

(1) 7,(2)

,,Z;) (n)

so that (20) follows from the arguments in proof of
Theorem 3.
Conversely it is easy to check that the entire func—

tion defined by ( 19) satisfies ( 18) .

3 Series Expansions Involving Che-
byshev Polynomials

Chebyshev polynomials T, ( z) of the first kind are

n

defined by

n! (-122 71/2)(2)

( 1/2) n n
which satisfy the following differential equations

(1-2") d*w/dz* - zdw/dz + n*w =0.

T,(z) =

3.1 Products of Chebyshev Polynomials

We consider the following partial differential equa—
tion

2
nou_ oy _p 90w ou  du_
(1-7)% - (1 z)az2 Lo e, =0 (21)

By using the usual separation method u( ¢ z) =v( ) *
w(z) we easily find that (21) have polynomial solu—
tions u(t z) =T,(¢t) T,(z) foreachn=01 2 ---.
Generally speaking the following result characterizes
all entire solutions of ( 21) .

Theorem 5  The partial differential equation
(21) has an entire solution f{ ¢ z) on C*if and only if

St z) is an entire function on C expressed by

ﬂM)=ngﬂﬂM
=0,

such that lim sup

n—

Cn
Proof Similar to the proof of Theorem 2 we can
prove this result.
3.2 Products of Chebyshev Polynomials and Trig—
onometric Functions
We consider the following partial differential equa—
tion

O u/ot’ —(1-2") 9*u/dz +2z20u/dz =0 (22)

flt z) is an entire function on C* expressed by

Mt z) =ay +byt + z(a”cos( nt) +
n=1
b,sin(nt)) T (2). (23)
Proof Let f{¢ z) be an entire solution of ( 22) .
For any t € C the entire function f,(z) =f(t z) onze

ACREEWAC)

n=0

T.(z) .Since f{ ¢t 2) is a solution of (22) we find
& Pfof o~ Fuld)
O:f{—(l—zz)afz];+sz= 2{( +

Co
C has a Neumann expansion

ot 0z n=0 dtz
&7 (2 dT (=
nzvn( t)) Tn(z) —’U"(t)((l _zz) d;g ) -z :](Z ) +

n’T,(z) ) }
which means
d*v, (1) /de* +n’v, (1) =0.
According to basic theory of ordinary differential
equations there exist two constants @, b, such that
n=0

n=1.

ay + byt
v,(t) =
a,cos( nt) +b, sin( nt)
Thus we obtain the expansion (23) .
Conversely it is easy to check that the entire func—

tion defined by (23) satisfies (22) .
3.3 Products of Chebyshev Polynomials and Bes—

sel Functions
We consider the following partial differential equa—
tion

2
T oz e Pu =0, (24)
zZ

> du 2

¢ P +(1-2) o7 +1
By using the usual separation method u( ¢ z) =v(1) *
w(z) then v(t) and w(z) have to satisfy separately
the equations

£ d*/de® +edv/de + (£ -5) v =0 (25)
and

(1-2") d*w/dz" - zdw/dz + sw =0 (26)
where s is a separation parameter. Writing s = n” the
solutions of (25) which are regular near t =0 are re—
presented for n =0 1 2 --- by the Bessel functions of
the first kind »(¢) =J,(¢) while (26) has for the

same values of s the Chebyshev polynomial solution
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w(z) =T,(z) and hence (24) have solutions u(t z) =
J,(t) T, (z) for each n=0 1 2
ing the following result characterizes all entire solu—

tions of (24) .
Theorem 7

-++. Generally speak—

The partial differential equation
(24) has an entire solution f{ ¢ z) on C” if and only if

ft z) is an entire function on C* expressed by

Arz) = Y nle (1) T,(2) (27)
n=0
such that
lim sup | ¢, | =0. (28)

Proof Let f{¢ z) be an entire solution of ( 24) .

For any t € C the entire function f,(z) =f(t z) onze

C has a Neumann expansion " f/(z) =
T.(2) such that

lim sup [v,(7) |"" =0.

Since f{ ¢ z) is a solution of (24) we find

(29)

2 2
0 :t2—8f+(1—z2) —a{+ta—f—za—f+t2f:
0z 0z

ot ot
d d*v dv
;}{(tz dnt(zt) i 7;1(;‘) +(t2 —nz)vn(t))Tn(z) +
&7 (z dT (z
v”(t)((l -7) 2;(2 ) -z T'(li(z ) +n2T"(z))}

which means
£d’, (1) /de +edo, (1) /de + (£ =n®) v, (1) =0.
According to basic theory of ordinary differential
, such that

where N, (t) is the

second kind of Bessel function ( Neumann function) of

equations there exist two constants ¢, d
v,(1) =nb ¢, J,(1) +d,N,(1)
order n. This equation yields easily d, =0 by studying
the singularity at ¢ = 0. Further according to the argu-
we know that (29) is equivalent to

(28) . Thus we obtain the expansion (27) .

ments in 11

Conversely it is easy to check that the entire func—

tion defined by (27) satisfies (24) .

4 Series Expansions Involving Bessel
Functions

Carl Neumann introduced a polynomial of degree

n+1 in 1/t as follows

O,(t) =1/t O(1) = %12:6 %(%)HH—M

n=1

called the Neumann’s polynomial of order n. They have

the generating function

V(=2 = 0,0 (2 +23 0,1 J,(2)

where J, are Bessel functions of the first kind. Then the

following fact follows easily from the Cauchy formula:
Lemma 1( Neumann) If f( z) is an analytic

function in a closed disc with centre at the coordinate

origin z is an interior point and C denotes the boundary

of the disc then f{ z) = 2 nle,J (z) where
n=0
1

rin!

¢y = f0) ¢ = L()n(t)ﬂt) dr.

4.1 Products of Bessel Functions

We consider the following partial differential equa—
tion

L‘z%—zzi?+tafl;—zafu+(z 2)
and characterizes all entire solutions of ( 30) as fol—-
lows:

Theorem 8  The partial differential equation
(30) has an entire solution f{ # z) on C if and only if

f{t z) is an entire function on C” expressed by

A2 = 3 (n) et (1) 1.2

n=0
I/n — O

(31)

such that lim sup | c,

n—o

Proof Let f{¢ z) be an entire solution of ( 30) .
For any t € C Lemma 1 implies that the entire function

fi(z) =f{t z2) onz € C has a Neumann expansion

fi(s) = Zn!vn(t)]n(z) such that lim Sup‘y"(t) n —,

n=0

According to the method in Section 1 we find that
v,(t) satisfy

£, (1) /de +edv, (1) /de + (7 =n’) v, (1) =O0.
Therefore there exists constants ¢, d, such that v, (1) =
n! ¢, J (1) +d,N, (t).Note that v, () are entire func—
tions so that d, =0 and hence (31) follows.

Conversely it is easy to check that the entire func—
tion defined by (31) satisfies ( 30) .
4.2 Products of Bessel Functions and Trigono—

metric Functions

We consider the following partial differential equa—
tion

Ou/d’ +2 9 u/dz +z0ul/dz +zu =0 (32)

and characterizes all entire solutions of (32) as fol—-
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lows: Theorem 10 **°  For 8> -1 a function f{ z)
Theorem 9  The partial differential equation of a complex variable z can be expanded into a general

(32) has an entire solution f{ ¢ z) on C?if and only if

flt 2) is an entire function on C* expressed by

e z) = (ag +byt) Jo(2) + z (a,cos(nt) +
n=1
b,sin(nt)) J,(2).
Proof See Section 3.2.
For example the equation ( 32) has an entire so—

lution as follows:

©

cos(zcos 1) = J,(2) +2 Z (-1)"1,,(2) cos(2ni) .

n=1

S Series Expansions Involving Laguerre
( or Hermite) Polynomials

0. Perron ** has studied in details the asymptotic
properties of the confluent hypergeometric function
®(a c;z) as z or one of the parameters a ¢ tends to
infinity. Using his general results and also the relation

(B,

n!

(-nB+1;2)

one can derive asymptotic formulas for Laguerre poly—
nomials L (8 z) in the region C— 0 o) and on the
ray 0 o) ‘. These formulas are sufficient to de—

scribe the region of convergence of a series of the kind

> a,L(B 2) (33)

basing on

Inla,

(34)

Ay = _IIT,iup 2 .
Proposition 1 7 The quantity A, defined by
(34) has the following properties:

(1)if Ay <O the series (33) is divergent at every
point of the region C - 0 o) ;
(i) if 0 <A, < oo the series ( 33) is absolutely

uniformly convergent on every compact subset of the re—

gion A(A,) ={zeC | Re( —z)'? <A,} and diverges

at every point of the region C —A( A,) .
If we select that branch of z'* for which ( -z) '*
is real and positive when z <0 then
Re( -2) " ={(r-x) 2}'? =)
gives the equation y* =4A*( x + A*) of the parabola

. 0
where z =x + iy =re".

Laguerre series ( 33) at A( A,) if and only if f( 2) is
analytic on A ( A,) and there is a positive number
B(B A) associated to every A with 0 <A < A, such
that

A2 [<B(B A) exp{xr2 = |x["?(A* = (r -

%) /2) "7} zeA(A). (35)
For series in Hermite polynomials H (z) i.e. se—

ries of the type

z a,H (z2) (36)

the following holds
Proposition 2 " The quantity
. In|(2n/e) "*a
T, = — lim sup

V. Py

has the following properties:

n

(1) if 7,<<O the series (36) is divergent at every
point of the region C — R;

(i) if 0 <7, < o the series ( 36) is absolutely
uniformly convergent on every compact subset of the re—

gion S(7,) ={zeC|lIm(2) | <7,} and diverges at

every point of the region C - S( 7,) .

The proof is based on the asymptotic formula for
Hermite polynomials given by G. Szegs * . The prob—
lem of expansion of analytic functions into series of
Hermite polynomials found a solution in 1940 by E.
Hille 7 as follows:

Theorem 11 A complex function f holomorphic
in the region S( 7,) (0 <7y < ) can be represented
in this region by a series of type ( 36) if and only if for
every 0<<7 <7, there exists a constant B( 7) =0 such
that the holomorphic function f in S( 7,) satisfies the
inequality

A2 [<B(7) exp{a’72 = |x[(7" =y") '}

forz=x+iyeS(71).
5.1 Products of Laguerre Polynomials

We consider the following partial differential equa—
tion
> >
20u du ou ou
-z 1-1)— - 1-2)=—=0 (37
LT (a1 =) 2 (ga1 -9 2o (37)
with @ B> - 1. By using the usual separation method

u(t z) =v(t) w(z) thenwo() and w(z) have to satis—
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fy separately the equations 627? 9, ilzt _2y Ju “2 o+l -2) u —0 (43)
td*0/d +(a+1 1) dv/dt +sv =0 (38) at dz at 9z
and with @ > — 1. By using the usual separation method
zdPw/ds + (B +1 -2) dw/dz +sw =0 (39) u( 1 z) =v(1) w(z) thenv(s) and w(z) have to satis—

where s is a separation parameter. Writing s =n the so—
lutions of ( 38) which are regular near t =0 are repre—
sented for n =0 1 2
v(t) =L, (a t) while (39) has for the same values of

-+ by the Laguerre polynomials

s the Laguerre polynomial solution w(z) =L,(B z)
and hence (37) have solutions u(t z) =L, (o 1)
L,(B z) foreachn=01 2

the following result follows easily.

-++. Generally speaking

Theorem 12 The equation (37) have entire so—

lutions f{ ¢ z) on C* expressed by

©

Atz = Y el(at)L(B 2 (40)

n=0
such that

- lim sup =+, (41)

Proof

that the following limit relation

L,(B 2 |

From the formula in 4 we conclude

o In
lim
n—® \/;

holds uniformly in any finite closed region of C exclu—

=2{(r-x) /2}'* =2r""sin( 6/2) (42)

ding the non-negative real axis. We also have the esti—
mate *

I'(n+B+1)
B+1)T(n+1)

L(B x) ‘Sr(

for x=0. Note that
I'(n+B+1) /T(n+1) ~n’.

By using Proposition 1 it is easy to check that the

exp( x/2)

condition (41) implies that g,(t) =f{(t z) is an entire
function of ¢ € C. Symmetrically we can prove that
f,(2) =f{t z) also is an entire function of z € C so
that (40) is an entire solution of ( 37) .

Now a natural question is that does each entire so—
lution f{ ¢t z) of (37) has the estimate ( 35) for any ?
In other words we suggest the following question:

Question 1 Does each entire solution f{ ¢ z) of
(37) has the expansion (40) satisfying (41) ?

5.2 Products of Hermite Polynomials and Laguerre
Polynomials
We consider the following partial differential equa—

tion

fy separately the equations

d*v/de* =2tdv/dt +s0 =0 (44)
and

wd’w/dZ +(a+1 -2) dw/dz +sw/2 =0 (45)
where s is a separation parameter. Writing s =2n the
solutions of (44) which are regular near t =0 are re—
presented forn =0 1 2 --* by the Hermite polynomials
v(t) =H, (t) while (45) has for the same values of s
the Laguerre polynomial solution w(z) =L,(« z) and
hence (43) have solutions u(t z) =H, () L,(«a z)
foreachn=01 2

ing result follows easily.

-++. Generally speaking the follow—

Theorem 13 The equation (43) have entire so—

lutions f{ ¢ z) on C” expressed by

Atz = Y eH(1)L(a2) (46)
n=0
such that
1 2 / n/2
—limsupn‘( nfe) e, =+ . (47)
n—o /2n +1

Proof Fix 1 C. We claim

In|(2n/e) ~"*H,(t
L0 e O N, (48)

" Jn
In fact noting
Hy (1) =( =2)"n! L,(-1/2 1)
H,,, (1) =(=2)"n! 2iL,(1/2 1)
then by using (42) we easily obtain
_hmln\(zn/e) H (1) | i

n—o ﬁ

for any t € C = R. When ¢ € R it is known that there

exists a constant A such that * 7
|H (1) |<A(2")) e (49)
Thus by using Stirling formula n! ~n"e™ /27n.

we easily obtain

-n/2
hmln | (2n/e) ~"*H (1) <0

T
for 1 € R so that the claim (48) is proved completely.
Therefore the condition (47) and (48) yield
In|c,H,(1) | {]n\ (2n/¢) ",
LS

—lim syp———— = —lim sup
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n 1 il St A B
/n e n
. Inf(
lim sup =

n—o

In|(2n/e) ~"*H (1) ‘}

&

1 2 / n/2
—ﬁlimsupn‘( n/e) e, = + o,

e J2n+1

Thus it follows from Proposition 1 that (46) is an en—

tire function of z € C.
Next fix z € C. The condition (47) and the formu—
la (42) obviously yields
In|(2n/e) "?c,L (a 2) |

n'n

- lim sup = +

e /a1

so that Proposition 2 implies that (46) also is an entire

function of ¢t € C.
5.3 Products of Hermite Polynomials

We consider the following partial differential equa—
tion

O u/or — 9’ u/oz —2tdu/ot +2z0u/dz =0. (50)
By using the usual separation method u( ¢t z) =v(¢) -
w(z) then v(t) and w( z) have to satisfy separately
the Hermite differential equations and hence ( 50)
have solutions u( ¢t z) = H, (t) H,(z) for each n =0

1 2 ---. Generally speaking the following result fol-
lows easily.
Theorem 14 The equation ( 50) have entire so—

lutions f{ ¢ z) on C” expressed by

Mz = Zaann(t) H,(2)

n

such that —lim supln | (2n/€) "¢,

/V2n+1 = + 0.

Proof It follows easily from the estimate ( 48)

and Proposition 2.

6 Series Expansions Involving Weber
Functions

6.1 Products of Weber Functions and Laguerre
Polynomials
We consider the following partial differential equa—
tion
’u  du
y—zg—(a+l —z)

with « > — 1. By using the usual separation method

al+(2—t2)u

oz 4 —00N

u(t z) =v(t)w(z) thenwo(t) and w(z) have to satis—

{y separately the equations

dPo/de® +(s+1/72-1/4) v =0 (52)
and

2dw/dz” +(a+1 -2) dw/dz +sw =0 (53)
where s is a separation parameter. Writing s =n the so—
lutions of (52) which are regular near ¢t =0 are repre—
sented for n =0 1 2
cylinder) functions

o(1) =D, (1) =( —1)"ed"e " /dt" =

e _[2/4Hn( t/42)

while (53) has for the same values of s the Laguerre

-+» by the Weber ( or parabolic

polynomial solution w(z) =L,( « z) and hence (51)
have solutions u(t z) =D (t) L (« z) for eachn =0

n n

1 2 ---. Generally speaking the following result fol—-
lows easily.
Theorem 15 The equation (51) have entire so—

lutions f{ t z) on C” expressed by

At z) = ioann(t) Lo 2) (54)

such that

1 2/ n/2
—limsupn‘( n/e) C”‘=+00‘ (55)

e V2n +1
Proof Fix te C. We claim
In|(2n/e) "D,(1) |

~ lim >0. (56)
n—o /\/;

In fact noting
D,(1) =( =2)"n! e *L( -1/2 £/2)
D,, . (1) =( =2)"n! J2te "L (1/2 £/2)
then by using (42) we easily obtain
In|(2n/e) "D, (1) |

n

— I1im = 4+ ©

n—o /\/g
for any t € C — R. When ¢ € R the estimate (49)
yields

D, (1) |<A(2"n)) '

-n

Thus by using Stirling formula n! ~n'"e 21
we easily obtain
limln | (2n/e) "D, (1) | <0
=
for 1 € R so that the claim (56) is proved completely.
Therefore the condition (55) and (56) yield
Inle,D,(1) | _
T =
. In|(2n/e) "¢ In|(2n/e) "°D,(1) |
—lim sup{ + : }

A n

—lim sup
e

n

=
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) In|(2n/e) ¢,
—lim sup -

n—o \/g
In | (2n/e) _'l/zD”( t) ‘

lim sup =

- 5

In|(2n/e)"”
—\/Zlimsupn‘( n/e) e

= el

Thus it follows from Proposition 1 that ( 54) is an en—

n

I
8

tire function of z e C.
Next fix z e C. The condition ( 55) and the formu-—
la (42) obviously yields
In|(2n/e) "¢, L (a 2) |

. n n
- lim sup = +©

- /a1

so that Proposition 2 implies that ( 54) also is an entire

function of ¢ € C.
6.2 Products of Hermite Polynomials and Weber
Functions

We consider the following partial differential equa—
tion
Ou/ot —=20°u/dz =2tou/dt + (2 =2) u/2 =0. (57)
By using the usual separation method u( ¢ z) =wv( ¢)
u(t z) =H,(t) D,(z) for each n =0 1 2
ally speaking
Theorem 14.

Theorem 16 The equation (57) have entire so—

we easily find that (57) have entire solutions
.-+, Gener—

the following result follows easily from

lutions f{ ¢ z) on C” expressed by

At = S et (i) Dy(2)

n=0
such that

In|(2n/€) "¢,

—lim sup————— = + =.

N ST

6.3 Products of Weber Functions
We consider the following partial differential equa—

tion

—1*) u/4 =0. (58)

By using the usual separation method u( ¢t z) =uv(¢)

w( z)

u(t z) =D, (t) D,(z) for each n =0 1 2

the following result follows easily from

Ou/ott - uloz + (2

we easily find that ( 58) have entire solutions
-++. Gener—
ally speaking
Theorem 14.
Theorem 17 The equation ( 58) have entire so—

lutions f{ ¢ z) on C* expressed by

fi2) = 20( ) D, ()

such that
In|(2n/e) "¢,

—lim sup————— = + =.

o V2n +1

Similar to Question 1 we may ask that are the

conditions in Theorem 13 ~ Theorem 17 necessary?
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