[1]罗贤,杨宗信.正则区域的对数导数单叶性内径[J].江西师范大学学报(自然科学版),2013,(02):179-182.
 LUO Xian,YANG Zong-xin.The Inner Radius of Univalence by Pre-Schwarzian Derivative of Regulated Domain[J].,2013,(02):179-182.
点击复制

正则区域的对数导数单叶性内径()
分享到:

《江西师范大学学报》(自然科学版)[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2013年02期
页码:
179-182
栏目:
出版日期:
2013-03-01

文章信息/Info

Title:
The Inner Radius of Univalence by Pre-Schwarzian Derivative of Regulated Domain
作者:
罗贤;杨宗信
江西师范大学数学与信息科学学院,江西南昌,330022
Author(s):
LUO Xian;YANG Zong-xin
关键词:
正则区域对数导数单叶性内径
Keywords:
regulated domainpre-Schwarzian derivativethe inner radius of univalence
分类号:
O174.51
文献标志码:
A
摘要:
研究了单位圆到正则区域的共形映射的对数导数,讨论了对数导数范数的一些性质,得到了带凸角的正则区域在对数导数意义下的单叶性内径的一个下界估计,并推导出椭圆内部区域的对数导数意义下的单叶性内径为1.
Abstract:
Making use of integral representation of a conformal map from the unit disk onto a regulated domain,the pre-Schwarzian derivative of the conformal map is discussed.A new estimation of lower bound of the inner radius of univalence by pre-Schwarzian derivative of a regulated domain with convex corners is obtained.

参考文献/References:

[1] Lehto O.Univalent functions and Teichmüller spaces[M].New York: Springer-Verlag,1987.
[2] 吴发族,杨宗信.等腰梯形的单叶性内径 [J].江西师范大学学报:自然科学版,2008,32(3):313-316.
[3] 刘新斌,杨宗信.平行四边形及等腰梯形的单叶性内径 [J].江西师范大学学报:自然科学版,2010,34(3):267-270.
[4] Becker J.Löwnersche differentialgleichung und quasikonform fortsetzbare schlichte Funktionen [J].J Reine Math,1972,255(1):23-43.
[5] Becker J,Pommerenke Ch.Schlichttheitskriterien and Jordangebiete [J].J Reine Math,1984,354(1):74-79.
[6] Zhuravlev I V.Model of the universal Teichmüller space [J].Sib Math J,1986,27(3):691-697.
[7] Astala K,Gehring F W.Injectivity,the BMO norm and the universal Teichmüller space [J].J Analyse Math,1986,46(1):16-57.
[8] Chen Jixiu,Wei Hanbai.Some geometric properties on a model of universal Teichmüller space [J].Chin Ann of Math,1997,18B(3):309-314.
[9] Stowe D.Injectivity and the pre-Schwarzian derivative [J].Michigan Math J,1998,45(3):537-546.
[10] Cheng Tao,Chen Jixiu.On the inner radius of univalency by pre-Schwarzian derivative [J].Sci Chin Ser A:Math,2007,50(7):987-996.
[11] Pommerenke C.Boundary behaviour of conformal maps [M].Berlin:Springer-Varlag,1992.

备注/Memo

备注/Memo:
国家自然科学基金(11071063,11261022);江西省教育厅科研课题(GJJ12175)
更新日期/Last Update: 1900-01-01