[1]吴佳,吴芬,陈裕先.向量值亚纯函数的亏量[J].江西师范大学学报(自然科学版),2013,(03):229-232.
 WU Jia,WU fen,CHEN Yu-xian.Deficiency of Vector Valued Meromorphic Function[J].,2013,(03):229-232.
点击复制

向量值亚纯函数的亏量()
分享到:

《江西师范大学学报》(自然科学版)[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2013年03期
页码:
229-232
栏目:
出版日期:
2013-05-01

文章信息/Info

Title:
Deficiency of Vector Valued Meromorphic Function
作者:
吴佳;吴芬;陈裕先
咸宁职业技术学院,湖北咸宁,437100;华南师范大学数学科学学院,广东广州,510631;新余学院数学与计算机科学学院,江西新余,338004
Author(s):
WU Jia;WU fen;CHEN Yu-xian
关键词:
亚纯函数Nevanlinna基本定理亏量关系亏量
Keywords:
meromorphic functionNevanlinna basic theoremdeficient relationdeficient number
分类号:
O174.52
文献标志码:
A
摘要:
利用从复平面C到无限维Hilbert空间E的无限维向量值亚纯函数的Nevanlinna基本理论,对无限维向量值亚纯函数的亏量进行了研究,建立了无限维向量值亚纯函数的亏量和与导函数零点的亏量之间的关系,所得结论推广了关于有限维向量值亚纯函数的相关结果.
Abstract:
The Nevanlinna theory of infinite dimensional vector-valued meromorphic functions from the complex plane C to infinite dimensional Hilbert space E is introduced,and the deficiency of infinite dimensional vector-valued meromorphic functions is studied.The relation between the deficiency sum of infinite dimensional vector-valued meromorphic functions and that of the deficiency of zero point of derivative functions is established.The results about finite dimensional vector-valued meromorphic functions have been extended.

参考文献/References:

[1] 张丹萍,雷纪刚.向量值Nevanlinna理论初探 [J].工科数学,1997,13(2):16-23.
[2] 张丹萍.向量值Nevanlinna第二基本定理的余项S(r)的估计 [J].工科数学,1999,15(1):28-35.
[3] 张丹萍,雷纪刚.向量值Nevanlinna第二基本定理 [J].北京机械工业学院学报,1997,16(1):32-38.
[4] 张丹萍.向量值Nevanlinna第二基本定理的应用 [J].北京机械工业学院,2002,18(2):28-34.
[5] 徐洪焱,易才凤.圆环内亚纯函数的拟亏量 [J].江西师范大学学报:自然科学版,2008,32(3):309-312.
[6] Hayman W K.Meromorphic functions [M].Oxford:Clarendon Press,1964.
[7] 窦盼英,张先荣.关于亚纯函数导数的亏量 [J].河南师范大学学报:自然科学版,2007,35(3):167-168.
[8] Lahiri I.Milloux theorem and deficiency of vector-valued meromorphic functions [J].J Indian Math Soc,1990,55(2):235-250.
[9] Hans J W Z.Vector valued Nevanlinna theory [M].Boston,Mass-London:Pitman Advanced Publishing Program,1982.
[10] Wu Zhaojun,Chen Yuxian.An inequality of meromorphic vector functions and its application [J].Abstract and Applied Analysis,2011,Article ID 518972,13.
[11] 何静,郑秀敏.几类高阶线性微分方程亚纯解的迭代级 [J].江西师范大学学报:自然科学版,2012,36(6):584-588.
[12] 陆万春,易才凤.在矩控制下随机Dirichlet级数的(p,q)(R)型 [J].江西师范大学学报:自然科学版,2012,36(5):482-486.
[13] 陈裕先,毛志强,廖秋根.微分方程f ″+A(z)f=0的解的零点充满圆 [J].江西师范大学学报:自然科学版,2011,35(5):444-446.
[14] Chuang Chitai.Differential polynomials of meromorphic functions [M].Beijing:Beijing Normal University Press,1999:177-197.

相似文献/References:

[1]易才凤,李爱平.一类复合差分函数零点的估计[J].江西师范大学学报(自然科学版),2012,(01):41.
 YI Cai-feng,LI Ai-ping.The Estimate on Zeros of Composition Differences of Meromorphic Functions[J].,2012,(03):41.
[2]赵小珍.亚纯函数及其导数分担小函数集的唯一性[J].江西师范大学学报(自然科学版),2012,(02):141.
 ZHAO Xiao-zhen.The Uniqueness of Meromorphic Functions and Their Derivatives Weighted-Sharing the Sets of Small Functions[J].,2012,(03):141.
[3]杨碧珑,易才凤.一类亚纯系数高阶线性微分方程解的增长性[J].江西师范大学学报(自然科学版),2012,(05):477.
 YANG Bi-long,YI Cai-feng.The Growth for Solutions of a Class of Higher Order Linear Differential Equations with Meromorphic Coefficient[J].,2012,(03):477.
[4]肖丽鹏,李明星.单位圆内非齐次线性微分方程的振荡解[J].江西师范大学学报(自然科学版),2013,(02):166.
 XIAO Li-peng,LI Ming-xing.Oscillatory Solutions of Nonhomogeneous Linear Differential Equation in the Unit Disc[J].,2013,(03):166.
[5]刘旭强,易才凤.关于2阶线性微分方程f″+Af'+Bf=0解的增长性[J].江西师范大学学报(自然科学版),2013,(02):171.
 LIU Xu-qiang,YI Cai-feng.On the Growth of Solutions of the Second Order Linear Differential Equation f"+Af'+Bf =0[J].,2013,(03):171.
[6]涂金,黄海霞,徐洪焱,等.单位圆内亚纯函数与解析函数的级与型[J].江西师范大学学报(自然科学版),2013,(05):449.
 TU Jin,HUANG Hai-xia,XU Hong-yan,et al.The Order and Type of Meromorphic Functions and Analytic Functions in the Unit Disc[J].,2013,(03):449.
[7]何涛,易才凤.复振荡中的辐角分布[J].江西师范大学学报(自然科学版),2013,(05):453.
 HE Tao,YI Cai-feng.On Angular Distribution in Complex Oscillation[J].,2013,(03):453.
[8]陈雪,田宏根,袁文俊,等.涉及分担值的Lahiri型正规定理[J].江西师范大学学报(自然科学版),2014,(01):37.
 CHEN Xue,TIAN Hong-gen,YUAN Wen-jun,et al.Normality Criteria of Lahiri's Type Concerning Shared Values[J].,2014,(03):37.
[9]艾丽娟,易才凤.一类亚纯系数高阶线性微分方程解的增长性[J].江西师范大学学报(自然科学版),2014,(03):250.
 AI Li-juan,YI Cai-feng.The Growth for Solutions of a Class of Higher Order Linear Differential Equations with Meromorphic Coefficients[J].,2014,(03):250.
[10]杨碧珑,易才凤.一类高阶线性微分方程解在角域上的增长性[J].江西师范大学学报(自然科学版),2014,(04):390.
 YANG Bi-long,YI Cai-feng.The Growth of Solutions of a Class Higher Order Linear Differential Equations in Angular Donains[J].,2014,(03):390.

备注/Memo

备注/Memo:
国家自然科学基金(11201395);江西省自然科学基金(20122BAB201006)
更新日期/Last Update: 1900-01-01