[1]张申贵.局部超线性常微分p-Laplacian系统的多重周期解[J].江西师范大学学报(自然科学版),2013,(03):240-243.
 ZHANG Shen-gui.Multiplicity of Periodic Solutions for Ordinary p-Laplacian Systems with Local Superlinear Nonlinearity[J].,2013,(03):240-243.
点击复制

局部超线性常微分p-Laplacian系统的多重周期解()
分享到:

《江西师范大学学报》(自然科学版)[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2013年03期
页码:
240-243
栏目:
出版日期:
2013-05-01

文章信息/Info

Title:
Multiplicity of Periodic Solutions for Ordinary p-Laplacian Systems with Local Superlinear Nonlinearity
作者:
张申贵
西北民族大学数学与计算机科学学院,甘肃兰州,730030
Author(s):
ZHANG Shen-gui
关键词:
常微分p-Laplacian系统局部超线性临界点
Keywords:
ordinary p-Laplacian systemslocal superlinearcritical point
分类号:
O175.25
文献标志码:
A
摘要:
利用临界点理论研究常微分p-Laplacian方程周期解的存在性,在比Ambrosetti-Rabinowitz条件更弱的超线性条件下,得到了多重周期解存在的充分条件.
Abstract:
The existence of infinitely many solutions for ordinary p-Laplacian systems is studied by critical point theory.Under a condition weaker than Ambrosetti-Rabinowitz's superlinear condition,some sufficient conditions for the existence of infinitely many solutions are obtained.

参考文献/References:

[1] Mawhin J.Some boundary value problems for Hartman-type perturbations of the ordinary vector p-Laplacian [J].Nonlinear Anal,2000,40(1):497-503.
[2] Manasevich R,Mawhin J.The spectrum of p-Laplacian systems with various boundary conditions and applications [J].Advance Differential Equations,2000,5(10/11/12):1289-1318.
[3] Xu Bo,Tang Chunlei.Some existence results on periodic solutions of ordinary p-Laplacian systems [J].J Math Anal Appl,2007,333(2):1228-1236.
[4] Wang Zhiyong,Zhang Jihui.Periodic solutions of non-automous second order systems with p-Laplacian [J].Electronic J Differential Equations,2009(17):1-12.
[5] Zhang Li,Ge Weigao.Periodic solutions for a kind of p-Laplacian Hamiltonian systems [J].Bull Korean Math Soc,2010,47(2):355-367.
[6] Zhang Xingyong,Tang Xianhua.Periodic solutions for an ordinary p-Laplacian system [J].Taiwanese Journal of Mathematics,2011,15(3):1369-1396.
[7] Willem M.Minimax theorems [M].Boston:Birkhauser,1996.
[8] Ding Yanheng,Luan Shixia.Multiple solutions for a class of nonlinear Schrödinger equations [J].J Differential Equations,2004,207(2):423-457.
[9] 王少敏,杨培亮.一类二阶哈密顿系统的周期解 [J].江西师范大学学报:自然科学版,2007,31(2):174-177.
[10] 王少敏.一类带有阻尼项的共振问题的周期解 [J].重庆师范大学学报:自然科学版,2012,29(2):60-64.
[11] Luan Shixia,Mao Anmin.Periodic solutions of a class of non-autonomous Hamiltonian systems [J].Nonlinear Anal,2005,61(8):1413-1426.

备注/Memo

备注/Memo:
国家自然科学基金(31260098);中央高校基本科研业务费专项(31920130004);西北民族大学中青年科研(12XB38)
更新日期/Last Update: 1900-01-01