[1]黄伟.基于连续肯德尔相关系数学习相似度函数的图像检索方法[J].江西师范大学学报(自然科学版),2013,(03):263-267.
 HUANG Wei.A Similarity Learning Method in Image Retrieval via Continuous Kendall-Tau Rank Correlation Coefficient[J].,2013,(03):263-267.
点击复制

基于连续肯德尔相关系数学习相似度函数的图像检索方法()
分享到:

《江西师范大学学报》(自然科学版)[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2013年03期
页码:
263-267
栏目:
出版日期:
2013-05-01

文章信息/Info

Title:
A Similarity Learning Method in Image Retrieval via Continuous Kendall-Tau Rank Correlation Coefficient
作者:
黄伟
南昌大学信息工程学院,江西南昌,330031
Author(s):
HUANG Wei
关键词:
图像检索相似度学习连续肯德尔相关系数
Keywords:
image retrievalsimilarity learningkendall-tau rank correlation coefficient
分类号:
TP242.6+2
文献标志码:
A
摘要:
提出了一种基于连续肯德尔相关系数学习图像间相似度函数和运用学习的相似度函数进行图像检索的方法.通过对500幅图像所组成的图像数据库以及和其他传统相似度函数学习方法在图像检索中检索效果的比较实验可以得出:该方法的图像检索效果要优于其他相比较的传统方法.
Abstract:
An image retrieval method with similarity learning via continuous kendall-tau rank correlation coefficient has been introduced.Experimental evaluation based on a database composed of 500 images reveals that the introduced method outperforms several other conventional similarity learning methods in this image retrieval application.

参考文献/References:

[1] Smeulder A,Worring M,Santini S,et al.Content-based image retrieval at the end of the early years [J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2000,22(12):1349-1380.
[2] Kendall M.A new measure of rank correlation [J].Biometrika,1938,30(1/2):81-93.
[3] 傅湧.用广义梯度刻画集值优化的强有效解 [J].江西师范大学学报:自然科学版,2009,33(1):47-51.
[4] World Health Organization.The world health report:life in the 21 century:a vision for all [M].Netherland:Geneva,1998.
[5] Weinberger K,Blitzer J,Saul L.Distance metric learning for large margin nearest neighborhood classification [C].Vancouver:Neural Information Processing Systems,2005:265-272.
[6] Weston J.Leave-one-out support vector machines [C].Stockholm:International Joint Conferences on Artificial Intelligence,1999:727-733.
[7] Chapelle O,Vapnik V,Bousquet O,et al.Choosing multiple parameters for support vector machines [J].Machine Learning,2002,46(1/3):131-159.
[8] Gold C,Sollich P.Model selection for support vector machine classification [J].Neurocomputing,2003,55(1/2):221-249.
[9] Xing E,Ng A,Jordan M,et al.Distance metric learning with application to clustering with side-information [C].Vancouver:Neural Information Processing Systems,2002:505-512.
[10] 马永成,肖诗斌,林春雨,等.基于内容的文档图像检索的特征抽取研究 [J].江西师范大学学报:自然科学版,2008,32(2):138-141.

备注/Memo

备注/Memo:
国家"863"计划(2013AA013804);江西省科技计划(20123BBG70208,20123BBE50103)
更新日期/Last Update: 1900-01-01