[1]马生全,李生刚.复模糊集值复模糊积分及其收敛性定理[J].江西师范大学学报(自然科学版),2015,(01):20-26.
 MA Shengquan,LI Shenggang.The Complex Fuzzy Set-Valued Complex Fuzzy Integral and Its Convergence Theorem[J].,2015,(01):20-26.
点击复制

复模糊集值复模糊积分及其收敛性定理()
分享到:

《江西师范大学学报》(自然科学版)[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2015年01期
页码:
20-26
栏目:
出版日期:
2015-02-10

文章信息/Info

Title:
The Complex Fuzzy Set-Valued Complex Fuzzy Integral and Its Convergence Theorem
作者:
马生全;李生刚
1.陕西师范大学数学与信息科学学院,陕西 西安 710062; 2.海南师范大学信息科学技术学院,海南 海口 571158
Author(s):
MA ShengquanLI Shenggang
关键词:
复模糊集值测度 复模糊集值可测函数 复模糊集值复模糊积分 收敛性定理
Keywords:
complex fuzzy set-valued measure complex fuzzy set-valued measurable function complex fuzzy set-valued complex fuzzy integral convergence theorem
分类号:
O 159
文献标志码:
A
摘要:
首先介绍复模糊集值测度与复模糊集值可测函数的概念及复模糊集值可测函数的性质,以及基于复模糊集值复模糊测度的复模糊集值积分概念及其基本性质; 其次,研究了复模糊集值复模糊积分的收敛问题,得到了这种拓广到复模糊集值上的复模糊积分的单调收敛定理、法都定理、控制收敛定理等重要的收敛性定理.
Abstract:
The concepts of complex fuzzy set-valued complex fuzzy measure and the complex fuzzy set-valued measurable function,the concepts of complex fuzzy set-valued complex fuzzy integral and its basic properties are introduced.And then the convergence problem of complex fuzzy set-valued complex fuzzy integral are studied,it's some important convergence theorems are obtained,such as the monotone convergence theorem,the Fatou theorem,the control convergence theorem.

参考文献/References:

[1] Wu Congxi,Zhang Deli,Guo Caimei.Fuzzy number fuzzy measure and fuzzy integrals(I):fuzzy integrals of functions with respect to fuzzy number fuzzy measure [J].Fuzzy Sets and Systems,1998,98(3):355-360.
[2] Guo Caimei,Zhang Deli,Wu Congxi.Fuzzy-valued fuzzy measures and generalized fuzzy integrals [J].Fuzzy Sets and Systems,1998,97(2):255-260.
[3] Wu Congxi,Zhang Deli,Zhang Bokan.Fuzzy number fuzzy measure and fuzzy integrals(I):fuzzy-valued functions with respect to fuzzy number fuzzy measure on fuzzy sets [J].Fuzzy Sets and Systems,1999,107(2):219-226.
[4] Buckley J J.Fuzzy complex numbers[J].Fuzzy Sets and Systems,1989,33(3):333-345.
[5] Zhang Guangquan.Fuzzy number-valued fuzzy measure and fuzzy number-valued fuzzy Integral on the fuzzy set [J].Fuzzy Sets and Systems,1992,49(3):357-376.
[6] Zhang Guangquan.The structural characteristics of the fuzzy number-valued fuzzy measure on the fuzzy algebra and their applications [J].Fuzzy Sets and Systems,1992,52(1):69-81.
[7] Zhang Guangquan.The convergence for a sequence of fuzzy integrals of fuzzy number-valued function on the fuzzy set [J].Fuzzy Sets and Systems,1993,59(1):43-57.
[8] Zhang Guangquan.On fuzzy number-valued fuzzy measures defined by fuzzy number-valued fuzzy integrals on the fuzzy set [J].Fuzzy Sets and Systems,1992,45(2):227-237.
[9] Zhang Guangquan.On fuzzy number-valued fuzzy measures defined by fuzzy number-valued fuzzy integrals on the fuzzy set [J].Fuzzy Sets and Systems,1992,48(2):257-265.
[10] 仇计清,李法朝,苏连青.复Fuzzy测度与复Fuzzy积分 [J].河北轻化工学院学报,1997,18(1):1-4.
[11] 王贵君,李晓萍.Fuzzy复值测度与Lebesgue积分 [J].哈尔滨师范大学学报:自然科学版,1999,15(2):21-26.
[12] Ma Shengquan,Chen Fuchuan,Wang Qiang,et al.The design of fuzzy classifier base on Sugeno type fuzzy complex-value integral [C]∥Proceedings of 2011 Seventh International Conferen on Computational Intelligence and Security.Sanya:IEEE Computer Society,2011:338-342.
[13] Ma Shengquan,Chen Fuchuan,Zhao Zhiqing.Choquet type fuzzy complex-valued integral and its application in classification [J].Fuzzy Engineering and Operations Research,2012,147:229-237.
[14] Ma Shengquan,Chen Fuchuan,Wang Qiang,et al.Sugeno type fuzzy complex-value integral and its application in classification [J].Procedia Engineering,2012,29:4140-4151.
[15] 欧阳耀,李军.模糊数值模糊可测函数定义的注记 [J].东南大学学报:自然科学版,2003,33(6):801-803.
[16] Ma Shengquan,Li Shenggang.Complex fuzzy set-valued Complex fuzzy measures and their properties [J].The Scientific World Journal,2014(2014):1-7.
[17] 陈梅琴.复模糊测度及其扩张的初步研究 [D].海口:海南师范大学,2011.
[18] 马生全.模糊复分析理论基础 [M].北京:科学出版社,2010.
[19] 张广全.模糊值测度论[M].北京:清华大学出版社,1998.

备注/Memo

备注/Memo:
国家国际科技合作专项基金(2012DFA11270)
更新日期/Last Update: 1900-01-01