[1]周天寿.基因表达模型的研究进展:概率分布[J].江西师范大学学报(自然科学版),2012,(03):221-229.
 ZHOU Tian-shou.Review on Gene Expression Models: Probability Distribution[J].Journal of Jiangxi Normal University:Natural Science Edition,2012,(03):221-229.
点击复制

基因表达模型的研究进展:概率分布()
分享到:

《江西师范大学学报》(自然科学版)[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2012年03期
页码:
221-229
栏目:
出版日期:
2012-05-01

文章信息/Info

Title:
Review on Gene Expression Models: Probability Distribution
作者:
周天寿
中山大学数学与计算科学学院,广东广州510275
Author(s):
ZHOU Tian-shou
关键词:
基因表达基因状态生化主方程概率密度母函数
Keywords:
gene expression gene state biochemical master equation probability density generating function
分类号:
Q141
文献标志码:
A
摘要:
定量化基因表达(包括数学建模及定性与定量分析)是理解细胞内部过程的重要一步,也是当今系统生物学的核心研究内容.基因表达模型已从最初的单状态简单模型发展到考虑细化生物过程、众多生物因素的多状态复杂模型.基于生物学的中心法则,综述了有关基因表达模型的最新研究进展,聚焦于数学模型的完善、mRNA 与蛋白质数目的概率分布等研究方面.通过综述,试图总结出有关基因表达的某些一般性规律,并提出今后需要进一步研究的问题与发展方向
Abstract:
Quantifying gene expression (including mathematical modeling and qualitative and quantitative analysis) is not only an important step toward to understanding intracellular processes but also the core of the current systems biology. Gene expression models have been developed to complicated multi-state models considering detailed biological processes and a number of biological factors from the initial simple single-state models. Based on central dogma in biology, The proceeding in the study of gene expression models, focusing on improvement of mathematical models, probability distribution of mRNAs and proteins, etc . are simply reviewed . Consequently, some general laws related to gene expression are summarized. In addition, some issues to deserve further studies are discussed and potential directions are pointed out.

参考文献/References:

[1] Blake W J, K?rn M, Collins J J. Noise in eukaryotic gene expression [J]. Nature, 2003, 422: 633-637.
[2] Raser J, O’Shea E. Control of stochasticity in eukaryotic gene expression [J]. Science, 2003, 304: 1811-1814.
[3] Boeger H, Griesenbeck J, Kornberg R D. Nucleosome retention and the stochastic nature of promoter chromatin remodeling for transcription [J]. Cell, 2008, 133: 716-726.
[4] Larson D R. What do expression dynamics tell us about the mechanism of transcription? [J]. Curr Opin Genet Dev, 2011, 21: 591-599.
[5] Chubb J R, Trcek T, Singer R H. Transcriptional pulsing of a developmental gene [J]. Curr Biol, 2006, 16: 1018-1025.
[6] Pedraza J M, Paulsson J. Effects of molecular memory and bursting on fluctuations in gene expression [J]. Science, 2008, 319: 339-343.
[7] Sánchez A, Kondev J. Transcriptional control of noise in gene expression [J]. Proc Natl Acad Sci U S A, 2008, 105: 5081-5086.
[8] Sanchez A, Garcia H G, Kondev J. Effect of promoter architecture on the cell-to-cell variability in gene expression [J]. PLoS Comput Biol, 2011, 7: e1001100.
[9] Mao C, Brown C R, Boeger H. Quantitative analysis of the transcription control mechanism [J]. Mol Syst Biol, 2010, 6: 431-438.
[10] Mariani L, Schulz E G, H?fer T. Short-term memory in gene induction reveals the regulatory principle behind stochastic IL-4 expression [J]. Mol Syst Biol, 2010, 6: 359-365.
[11] Miller-Jensen K, Dey S S, Arkin A P. Varying virulence: epigenetic control of expression noise and disease processes [J]. Trends Biotechnol, 2011, 29: 517-525.
[12] 周天寿, 胡长春. 3类基因振子和它们的基本动力学 [J]. 江西师范大学学报: 自然科学版, 2008, 32(1): 1-5.
[13] Friedman N, Cai L, Xie X S. Linking stochastic dynamics to popu?lation-distribution: an analytical framework of gene expression [J]. Phys Rev Lett, 2006, 97: 168302.
[14] Paulsson J. Summing up the noise in gene networks [J]. Nature, 2004, 427: 415-418.
[15] Thattai M, Van Oudenaarden A. Intrinsic noise in gene regulatory networks [J]. Proc Natl Acad Sci U S A, 2001, 98: 8614-8619.
[16] Peccoud J, Ycart B. Markovian modelling of gene product synthesis [J]. Theor Popul Biol, 1995, 48: 222-234.
[17] Shahrezaei V, Swain P S. Analytical distributions for stochastic gene expression [J]. Proc Natl Acad Sci U S A, 2008, 105: 17256-17261.
[18] Paulsson J. Models of stochastic gene expression [J]. Phys Life Rev, 2005, 2: 157-175.
[19] Kepler T B, Elston T C. Stochasticity in transcriptional regulation: origins, consequences and mathematical representations [J]. Biophys J, 2001, 81: 3116-3136.
[20] Paulsson J, Ehrenberg M. Random signal fluctuations can reduce random fluctuations in regulated components of chemical regulatory networks [J]. Phys Rev Lett, 2000, 84: 5447-5450.
[21] Karmakar R, Bose I. Graded and binary responses in stochastic gene expression [J]. Phys Biol, 2004, 1: 197-204.
[22] Iyer-Biswas S, Hayot F, Jayaprakash C. Stochasticity of gene products from transcriptional pulsing [J]. Phys Rev E, 2009, 79: 031911.
[23] Mugler A, Walczak A M, Wiggins C H. Spectral solutions to stochastic models of gene expression with bursts and regulation [J]. Phys Rev E, 2009, 80: 041921.
[24] Mackey M C, Tyran-Kamińska M, Yvinec R. Molecular distributions in gene regulatory dynamics [J]. J Theor Biol, 2011, 274: 84-96.
[25] Assaf M, Roberts E, Luthey-Schulten Z. Determining the stability of genetic switches: explicitly accounting for mRNA noise [J]. Phys Rev Lett, 2011, 106: 248102.
[26] Suter D M, Molina N, Naef F. Mammalian genes are transcribed with widely different bursting kinetics [J]. Science, 2011, 332: 472-474.
[27] Harper C V, Finkenst?dt B, White M R. Dynamic analysis of stochastic transcription cycles [J]. PLoS Biol, 2011, 9: e1000607.
[28] Zhang Jiajun, Zhou Tianshou. Analytical distribution and tunability of noise in a model of promoter progress [J]. Biophys J, 2012, 102: 1247-1257.
[29] Zhang Jiajun, Yuan Zhanjiang, Zhou Tianshou. Physical limits of feedback noise-suppression in biological networks [J]. Phys Biol, 2009, 6: 046009.
[30] 苑占江, 张家军, 周天寿. 基因自调控环路的功能 [J]. 生物物理学报, 2010, 26(6): 457-471.
[31] Zhang Jiajun, Yuan Zhanjiang, Li Hanxiong, et al. Architecture-dependent robustness and bistability in a class of genetic circuits [J]. Biophys J, 2010, 99: 1034-1042.
[32] Ullah M, Wolkenhauer O. Family tree of Markov models in systems biology [J]. IET Syst Biol, 2007, 1(4): 247-254.
[33] Van Kampen N G. Stochastic process in physics and chemistry [M]. Amsterdam: North-Holland, 1992.
[34] Sakurai J. Modern quantum mechanics [M]. India: Pearson Education, 1985.
[35] McAdams H H, Arkin A. Stochastic mechanisms in gene expression [J]. Proc Natl Acad Sci U S A, 1997, 94(3): 814-819.
[36] Raj A, Peskin C S, Tranchina D, et al. Stochastic mRNA synthesis in mammalian cells [J]. PLoS Biol, 2006, 4(10): e309.
[37] Slater L J. Confluent hypergeometric functions [M]. Cambridge: Cambridge University Press, 1960.
[38] Iyer-Biswas S, Jayaprakash C. Mixed poisson distribution in exact solution of stochastic auto-regulation models [J]. arXiv, 1110.2804v1 [q-bio.QM] 12 Oct. 2011.
[39] Tanase-Nicola S, Warren P B, Ten Wolde P R. Signal detection, modularity, and the correlation between extrinsic and intrinsic noise in biochemical networks [J]. Phys Rev Lett, 2006, 97: 068102.

相似文献/References:

[1]杨喜艳,吴亚豪.调控机制依赖的能量消耗[J].江西师范大学学报(自然科学版),2016,40(04):338.
 YANG Xiyan,WU Yahao.The Regulation-Mechanism-Dependent Energy Consumption[J].Journal of Jiangxi Normal University:Natural Science Edition,2016,40(03):338.

更新日期/Last Update: 1900-01-01