参考文献/References:
[1] 王惠文, 朱韵华. PLS回归在消除多重共线性中的作用 [J]. 数理统计与管理, 1996, 15(6): 48-52.
[2] Wold S. Partial least squate in Ess [M]. New York: Wiley, 1985 : 81-591.
[3] Wold S, Algano C, Dunn M , et al.Pattern regression finding and using regularities in multivariate data [M]. Landon: Analysis Applied Science Publication, 1983.
[4] Wold S. Modeling data labels by principal component and PLS : class patterns and quantitative predictive relations [J]. Analysis, 1984, 12: 477-485.
[5] Hoskuldsson A. PLS regression methods [J]. Journal of Chemometrics, 1988, 2(3): 211-228.
[6] Geladi P, Qkoulaski B. Partial least squares regression: a tutorial [J]. Analytical Chemical data, 1986, 35: 1-17.
[7] Tenenhaus M, Gauchi J P, Menardo C. Regression PLS et application [J]. Revue de statistique appliquce 1995, 53(1): 7-63.
[8] 王惠文. 偏最小二乘回归方法及其应用 [M]. 北京: 国防工业出版社, 1999.
[9] Fornell C. A second genetation of multivarite analysis [M].New York: Pracger, 1982.
[10] Lindgren F, Geladi P, Wold S. The kernel algorithm for PLS [J]. J Chemometrics, 1993, 7: 45.
[11] Hoskuldsson A. A combined theory for PCA and PLS [J]. J Chemometrics, 1995, 9: 91.
[12] Hupinder B, Dayal S, John, Macgregor F. Improved PLS algorithms [J]. Journal of Chemometrics, 1997, 11: 73-85.
[13] Jong S D, Braak C J F T.JChemometrics, 1994, 8: 169.
[14] Jong S D. SIMPLS: an alternative approach to partial least squares regression [J]. Chemometrics Intelligent Laboratory Systems, 1993, 18: 251-263.
[15] Zhu Yunhua, Wang Huiwen, Yang Xianglong. A simplified algorithm of PLS regression [J]. Journal of Systems Science and Systems Engineering, 2000, l 9(4): 414-419.
[16] Hinkle J, Rayens W. Partial least squares and compositional data: problens and alternatives [J]. Chemometrics and Intelligent Laboratory Systems, 1995, 30(1): 159-172.
[17] Stone M, Brooks K J. Continum regression: Cross-validation sequentially constructed prediction embracing ordinary least squares, partial least squares and principal components regression [J]. J the Royal statistical society series B(Methodological), 1990, 52(2): 237-269.
[18] 赵仕健, 徐用懋. 部分最小二乘算法的神经元网络实现 [J]. 清华大学学报: 自然科学版, 2004, 44(10): 1348-1351.
[19] Bush B L, Nachbar J R B. Sample-distamce partial least squares: PLS optimzed for many wariables, with application to CoMFA [J]. J Compute-Aided Mol, Design, 1993, 7: 587-619.
[20] StoneM. Cross-balidatory choice and assessment fo statistical predictions [J]. J Royal Stat, Soc B, 1974, 36: 111-133.
[21] Geisser S. A predictive approach to the random effect model [J]. Biometrika, 1974, 61: 101-107.
[22] Baroni M, Costantino G, Riganelli D, et al. Generationg optimal linear PLS estimations(GOLPE): an advanced chemometric tool for handing 3D QSAR problems [J]. Quant Struct-Act Relat, 1993, 12: 9-20.
[23] Fredrik L, Stefan R. Alternative partial least-squares(PLS) algorithms [J]. Perspectives in Drug Discovery and Design, 1998(12/14): 105-113, .
[24] Rannar S, Geladi P, Lindgren F, et al. A PLS kernel algorithm for data sets with mahy variables and less objects: part 2.Cross- validation, missing data and examples [J]. J Chemometrics, 1995, 9: 459-470.
[25] Little R J A, Rubin D B. Statistical analysis with missing data [M]. New York: Wiley, 1987.
[26] Dayal B S. Department of chemical engineering [D]. McMaster : McMaster University, 1996.
[27] Dayal B S, MacGregor J F. J Process Control, 1996.
[28] 刘强, 尹力. 一种简化递推偏最小二乘建模算法及其应用 [J].北京航空航天大学学报, 2003, 29(7): 640-643.