[1]易才凤,刘旭强.方程f″+Af'+Bf=0的解在角域内的增长性及Borel方向[J].江西师范大学学报(自然科学版),2013,(01):1-5.
 YI Cai-feng,LIU Xu-qiang.The Growth and Borel Direction of Solutions for Differential Equation f" + Af' + Bf =0 in Angular Domains[J].Journal of Jiangxi Normal University:Natural Science Edition,2013,(01):1-5.
点击复制

方程f″+Af'+Bf=0的解在角域内的增长性及Borel方向()
分享到:

《江西师范大学学报》(自然科学版)[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2013年01期
页码:
1-5
栏目:
出版日期:
2013-01-01

文章信息/Info

Title:
The Growth and Borel Direction of Solutions for Differential Equation f" + Af' + Bf =0 in Angular Domains
作者:
易才凤;刘旭强
江西师范大学数学与信息科学学院,江西南昌,330022
Author(s):
YI Cai-feng;LIU Xu-qiang
关键词:
微分方程角域Borel方向无穷级
Keywords:
differential equations solutions angular domain Borel direction infinite order
分类号:
O174.52
文献标志码:
A
摘要:
运用角域内值分布的理论和方法,研究了整系数2阶线性微分方程f”+Af’+Bf=0的解在角域内的增长性和Borel方向.在给定条件下,证明了方程的每一非零解在含有B的λ(λ>0)级Borel方向的任意角域内的增长级均为无穷,且B的λ级Borel方向与解的无穷级Borel方向一致.
Abstract:
The growth and Borel direction of solutions in angular domains for differential equation f ″+Af '+Bf=0 is investigated where A(z) and B(z) are entire functions,by using the fundamental theory and method of value distribution in angular domain.Under some conditions,it is proved that every solution f0 of the equation is of infinite order in any angular domain which has λ order Borel direction of B(z),and the ∞order Borel direction of the solution is unanimous with the λ order Borel direction of B(z).

参考文献/References:

[1] Hayman W.Meromorphic function [M].Oxford:Clarendon Press,1964.
[2] 杨乐.值分布论及其新研究 [M].北京:科学出版社,1982.
[3] Wu Shengjian.On the location of zeros of solution of f ″+Af=0 where A(z) is entire [J].Math Scand,1994,74(2):293-312.
[4] Laine I,Wu Shengjian.Removable sets in the oscillation theroy of complex differential equations [J].Math Anal Appl,1997,214(1):233-244.
[5] 张广厚.整函数和亚纯函数理论 [M].北京:科学出版社,1986.
[6] Gundersen G G.Finite order solutions of second order linear differential equations [J].Trans Amer Math Soc,1988,305(1):415-429.
[7] Hellenstein S,Miles J,Rossi J.On the growth of solutions of f ″+gf'+hf=0 [J].Trans Amer Math Soc,1991,324(2):693-706.
[8] 石磊,易才凤.一类高阶线性微分方程解的增长性 [J].江西师范大学学报:自然科学版,2012,36(3):230-233.
[9] 杨碧珑,易才凤.一类亚纯系数高阶线性微分方程解的增长性 [J].江西师范大学学报:自然科学版,2012,36(5):477-481.
[10] Wu Shengjian.On the growth of solution of second order linear differential equation in an angle [J].Complex Variables,Theory and Application,1994,24(3/4):241-248.
[11] Valiron G.Recherches sur le theoreme de M.Borel dans la theorie des fonctions meromorphes [J].Aca Math,1929,52(1):67-92.
[12] Goldberg A A,Ostrovskii I V.The distribution of values of meromorphic functions [M].Moscow:Izdat Nauk,1970.
[13] Nevannlinna R H.Uber die eigenschaften meromorpher funktionen in einem winkelraum [J].Acta Soc Sci Fenn,1925,50(12):1-45.
[14] Tsuji M.Potential theory in modern function [M].Tokyo:Maruzen Co LTD,1959.
[15] Zheng Jianghua.Value distribution of meromorphic functions [M].Berlin:Springer-Verlag,2010.
[16] Wu Shengjian.Estimates for the logarithmic derivative of a meromorphic function in an angle and their application [C].Tianjin:Proceeding of International Conference on Complex Analysis at the Nankai Institute of Mathematics,1992:235-241.
[17] Barry P D.Some theorems related to the cosπρ theorem[J].Proc London Math Soc,1970,21(3):334-360.

相似文献/References:

[1]石磊,易才凤.一类高阶线性微分方程解的增长性[J].江西师范大学学报(自然科学版),2012,(03):230.
 SHI Lei,YI Cai-feng.The Growth of Solutions for a Class Higher Order Linear Differential Equations[J].Journal of Jiangxi Normal University:Natural Science Edition,2012,(01):230.
[2]冯斌,刘慧芳,李延玲.一类高阶微分方程解的增长性[J].江西师范大学学报(自然科学版),2012,(04):335.
 FENG Bin,LIU Hui-fang,LI Yan-ling.On the Growth for Solutions of a Certain Higher Order Differential Equation[J].Journal of Jiangxi Normal University:Natural Science Edition,2012,(01):335.
[3]杨碧珑,易才凤.一类亚纯系数高阶线性微分方程解的增长性[J].江西师范大学学报(自然科学版),2012,(05):477.
 YANG Bi-long,YI Cai-feng.The Growth for Solutions of a Class of Higher Order Linear Differential Equations with Meromorphic Coefficient[J].Journal of Jiangxi Normal University:Natural Science Edition,2012,(01):477.
[4]李延玲,刘慧芳,冯斌.微分方程f′′+A_1(z)e~(az~n)f′+A_0(z)e~(bz~n)f=F(z)的复振荡[J].江西师范大学学报(自然科学版),2012,(06):579.
 LI Yan-ling,LIU Hui-fang,FENG Bin.On the Complex Oscillation of Differential Equations[J].Journal of Jiangxi Normal University:Natural Science Edition,2012,(01):579.
[5]刘旭强,易才凤.关于2阶线性微分方程f″+Af'+Bf=0解的增长性[J].江西师范大学学报(自然科学版),2013,(02):171.
 LIU Xu-qiang,YI Cai-feng.On the Growth of Solutions of the Second Order Linear Differential Equation f"+Af'+Bf =0[J].Journal of Jiangxi Normal University:Natural Science Edition,2013,(01):171.
[6]安蕾,肖丽鹏.一类2阶微分方程的解和小函数的关系[J].江西师范大学学报(自然科学版),2013,(03):233.
 AN Lei,XIAO Li-peng.The Relation between Solutions of a Class of Second Order Differential Equation with Functions of Small Growth[J].Journal of Jiangxi Normal University:Natural Science Edition,2013,(01):233.
[7]艾丽娟,易才凤.一类亚纯系数高阶线性微分方程解的增长性[J].江西师范大学学报(自然科学版),2014,(03):250.
 AI Li-juan,YI Cai-feng.The Growth for Solutions of a Class of Higher Order Linear Differential Equations with Meromorphic Coefficients[J].Journal of Jiangxi Normal University:Natural Science Edition,2014,(01):250.
[8]杨碧珑,易才凤.一类高阶线性微分方程解在角域上的增长性[J].江西师范大学学报(自然科学版),2014,(04):390.
 YANG Bi-long,YI Cai-feng.The Growth of Solutions of a Class Higher Order Linear Differential Equations in Angular Donains[J].Journal of Jiangxi Normal University:Natural Science Edition,2014,(01):390.
[9]钟文波,易才凤.一类高阶线性微分方程解的增长级[J].江西师范大学学报(自然科学版),2014,(04):399.
 ZHONG Wen-bo,YI Cai-feng.On the Growth of Solutions of a Class of Higher Order Linear Differential Equations[J].Journal of Jiangxi Normal University:Natural Science Edition,2014,(01):399.
[10]龚攀,肖丽鹏.某类高阶复微分方程解的增长性[J].江西师范大学学报(自然科学版),2014,(05):512.
 GONG Pan,XIAO Li-peng.The Growth of Solutions of a Class of Higher Order Complex Differential Equations[J].Journal of Jiangxi Normal University:Natural Science Edition,2014,(01):512.
[11]许淑娟,易才凤.高阶线性微分方程的解在角域内的增长性及Borel方向[J].江西师范大学学报(自然科学版),2013,(04):401.
 XU Shu-juan,YI Cai-feng.The Growth and Borel Direction of Solutions of Higher Order Linear Differential Equation in Angular Domains[J].Journal of Jiangxi Normal University:Natural Science Edition,2013,(01):401.
[12]胡军,易才凤.高阶非齐次线性微分方程解沿径向的振荡性质[J].江西师范大学学报(自然科学版),2014,(02):162.
 HU Jun,YI Cai-feng.The Radial Oscillation of Higher Order Non-Homogeneous Linear Differential Equation[J].Journal of Jiangxi Normal University:Natural Science Edition,2014,(01):162.

备注/Memo

备注/Memo:
国家自然科学基金(11171170)
更新日期/Last Update: 1900-01-01