参考文献/References:
[1] Walters P.Anintroduction to ergodic theory [M].Berlin:Springer-Verlag,2003:146-153.
[2] Lasto A,Myjak J,Szarek T.Markov operators with a unique invariant measures [J].J Math Anal Appl,2002,276:343-356.
[3] 王明文.一类Markov过程不变测度的存在性及应用[J].江西师范大学学报:自然科学版,1991,15(4):306-312.
[4] 谷安辉.对偶分支过程的遍历及指数遍历性[J].江西师范大学学报:自然科学版,2008,32(6):687-691.
[5] Szarek T.The uniqueness of invariant measures for Markov operators [J].Stud Math,2008,189(3):225-233.
[6] Komorowski T,Peszat S,Szarek T.On ergodicity of some Markov processes [J].Anna Prob,2010,38(4):1401-1443.
[7] Lemma O H,Lasserre J B.Ergodic theorems and ergodic decomposition for Markov chains [J].Acta Appl Math,1998,54(1):99-119.
[8] Costa O L V,Dufour F.On the ergodic decomposition for a class of Markov chains [J].Stoc Process Appl,2005,115(3):401-415.
[9] Szarek T.The stability of Markov operators on Polish spaces [J].Stud Math,2000,143(2):145-152.
[10] Bogachev V I.Measure theory [M].2nd ed.Bejing:Higher Edcation Press,2010.
[11] Lemma O H,Lasserre J B.Markov chain and invariant probabilities [M].Basel:Birkǎuser-Verlag,2003.
[12] Krengel U.Ergodic theorems [M].Berlin:De Gruyter,1985.
[13] Petersen K E.Ergodic theory [M].London:Cambridge University Press,1983.
[14] Ethier S N,Kurtz T G.Markov process characterization and convergence [M].New York: John Wiley & Sons,1986.
[15] Pachl J K.Measures as functionals on uniformily continuous functions [J].Pac J Math,1979,82(2):515-521.
[16] Prato G D,Zabczyk J.Ergodicity for infinite dimensional systems [M].London:Cambridge University Press,1996.
[17] Lasota A,Myjak J.Markov operators and fractals [J].Bull Polish Acad Sci Math,1997,45(2):197-210.
相似文献/References:
[1]郭新伟,吕延芳,齐海涛.一类Markov-Feller算子不变测度的存在性与唯一性[J].江西师范大学学报(自然科学版),2014,(04):419.
GUO Xin-wei,LYU Yan-fang,QI Hao-tao.The Existence and Uniqueness of Invariant Probability Measures for a Class of Markov-Feller OPerators[J].Journal of Jiangxi Normal University:Natural Science Edition,2014,(02):419.