[1]郭新伟,喻建华,齐海涛.一类Markov算子的遍历性[J].江西师范大学学报(自然科学版),2013,(02):183-186.
 GUO Xin-wei,YU Jian-hua,Qi Hai-tao.Ergodicity for a Class of Markov Operators[J].Journal of Jiangxi Normal University:Natural Science Edition,2013,(02):183-186.
点击复制

一类Markov算子的遍历性()
分享到:

《江西师范大学学报》(自然科学版)[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2013年02期
页码:
183-186
栏目:
出版日期:
2013-03-01

文章信息/Info

Title:
Ergodicity for a Class of Markov Operators
作者:
郭新伟;喻建华;齐海涛
山东大学威海分校数学与统计学院,山东威海,264209;东华理工大学长江学院,江西南昌,330013
Author(s):
GUO Xin-wei;YU Jian-hua;Qi Hai-tao
关键词:
Markov-Feller算子不变测度紧性测度遍历分解
Keywords:
Markov-Feller operatorsinvariant measurestight measuresergodic decomposition
分类号:
O177.99
文献标志码:
A
摘要:
利用遍历理论研究了完备可分距离空间上其对偶算子的算术平均具有等度连续性的Markov-Feller算子的遍历性质,得到此类算子的Yosida型遍历分解定理,并简洁证明了Markov-Feller算子具有唯一不变测度的一个结果.
Abstract:
Ergodicity of a class of Markov-Feller operators with equicontinuous average dual operators is studied by the ergodic theory.As an application,a Yosida type ergodic decomposition theorem for such operators is proved and a simple proof on the uniqueness of invariant measures for Markov-Feller operators is given.

参考文献/References:

[1] Walters P.Anintroduction to ergodic theory [M].Berlin:Springer-Verlag,2003:146-153.
[2] Lasto A,Myjak J,Szarek T.Markov operators with a unique invariant measures [J].J Math Anal Appl,2002,276:343-356.
[3] 王明文.一类Markov过程不变测度的存在性及应用[J].江西师范大学学报:自然科学版,1991,15(4):306-312.
[4] 谷安辉.对偶分支过程的遍历及指数遍历性[J].江西师范大学学报:自然科学版,2008,32(6):687-691.
[5] Szarek T.The uniqueness of invariant measures for Markov operators [J].Stud Math,2008,189(3):225-233.
[6] Komorowski T,Peszat S,Szarek T.On ergodicity of some Markov processes [J].Anna Prob,2010,38(4):1401-1443.
[7] Lemma O H,Lasserre J B.Ergodic theorems and ergodic decomposition for Markov chains [J].Acta Appl Math,1998,54(1):99-119.
[8] Costa O L V,Dufour F.On the ergodic decomposition for a class of Markov chains [J].Stoc Process Appl,2005,115(3):401-415.
[9] Szarek T.The stability of Markov operators on Polish spaces [J].Stud Math,2000,143(2):145-152.
[10] Bogachev V I.Measure theory [M].2nd ed.Bejing:Higher Edcation Press,2010.
[11] Lemma O H,Lasserre J B.Markov chain and invariant probabilities [M].Basel:Birkǎuser-Verlag,2003.
[12] Krengel U.Ergodic theorems [M].Berlin:De Gruyter,1985.
[13] Petersen K E.Ergodic theory [M].London:Cambridge University Press,1983.
[14] Ethier S N,Kurtz T G.Markov process characterization and convergence [M].New York: John Wiley & Sons,1986.
[15] Pachl J K.Measures as functionals on uniformily continuous functions [J].Pac J Math,1979,82(2):515-521.
[16] Prato G D,Zabczyk J.Ergodicity for infinite dimensional systems [M].London:Cambridge University Press,1996.
[17] Lasota A,Myjak J.Markov operators and fractals [J].Bull Polish Acad Sci Math,1997,45(2):197-210.

相似文献/References:

[1]郭新伟,吕延芳,齐海涛.一类Markov-Feller算子不变测度的存在性与唯一性[J].江西师范大学学报(自然科学版),2014,(04):419.
 GUO Xin-wei,LYU Yan-fang,QI Hao-tao.The Existence and Uniqueness of Invariant Probability Measures for a Class of Markov-Feller OPerators[J].Journal of Jiangxi Normal University:Natural Science Edition,2014,(02):419.

备注/Memo

备注/Memo:
国家自然科学基金(11102102)
更新日期/Last Update: 1900-01-01