参考文献/References:
[1] 冯康,秦孟兆.哈密尔顿系统的辛几何算法 [M].杭州:浙江科学技术出版社,2002.
[2] Zeng Wenping.A leap frog finite difference scheme for a class of nonlinear Schrödinger equations of high order [J].J Comput Math,1999,17(2):133-138.
[3] Kong Linghua,Hong Jialin,Wang Lan,et al.Symplectic integrator for nonlinear high order Schrödinger equation with a trapped term [J].J Comput Appl Math,2009,231(2):664-679.
[4] Hong Jialin,Jiang Shanshan,Li Chun.Explicit multi-symplectic methods for Klein-Gordon-Schrödinger equations [J].J Comput Phys,2009,228(9):3517-3532.
[5] Kong Linghua,Cao Ying,Wang Lan,et al.Split-step multisymplectic integrator for the fourth-order Schrödinger equation with cubic nonlinear term [J].J Chin Comput Phys,2011,28(5):76-82.
[6] 黄红,王兰.薛定谔方程的局部1维多辛算法 [J].江西师范大学学报:自然科学版,2011,35(5):455-458.
[7] 王兰.多辛Preissmann格式及其应用 [J].江西师范大学学报:自然科学版,2009,33(1):42-46.
[8] 王兰,陈静.2维Schrödinger方程的多辛格式 [J].江西师范大学学报:自然科学版,2010,34(6):600-604.
[9] Miller J H.On the location of zeros of certain class of polynomials with application to numerical analysis [J].J Inst Math Appl,1971,8(3):397-406.
[10] Qin Mengzhao,Zhang Meiqing.Mutil-stage symplectic schemes of two kinds of Hamiltonian systems for wave equations [J].Computer Math Appl,1990,19(10):51-62.
[11] 符芳芳,孔令华,王兰.一类新的含双幂非线性项的Schrödinger方程的差分格式 [J].江西师范大学学报:自然科学版,2010,34(1):22-26.