[1]李永成,黄曙光,杨斌,等.新浪微博名人堂用户关系网络分析[J].江西师范大学学报(自然科学版),2013,(04):376-381.
 LI Yong-cheng,HUANG Shu-guang,YANG Bin,et al.A Research on Famous-User Network of Sina-Weibo[J].Journal of Jiangxi Normal University:Natural Science Edition,2013,(04):376-381.
点击复制

新浪微博名人堂用户关系网络分析()
分享到:

《江西师范大学学报》(自然科学版)[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2013年04期
页码:
376-381
栏目:
出版日期:
2013-09-01

文章信息/Info

Title:
A Research on Famous-User Network of Sina-Weibo
作者:
李永成;黄曙光;杨斌;郭浩
解放军电子工程学院网络系,安徽合肥,230037
Author(s):
LI Yong-cheng;HUANG Shu-guang;YANG Bin;GUO Hao
关键词:
网络结构分析名人堂网络度相关性
Keywords:
network structure analysisfamous-user networkdegree correlation
分类号:
TP391
文献标志码:
A
摘要:
以新浪微博名人堂用户所形成的用户关系网络为研究对象,利用复杂网络的分析方法对该网络的度分布、小世界现象、度相关性等多个方面进行了分析.研究结果表明:该网络在度分布上存在背离幂律分布的现象,网络有效直径较短,各节点度之间不存在明显的相关性、网络不具有层次性等特点.
Abstract:
Aiming towards the user relation network oriented from the Famous-User of Sina-Weibo,many facets including the degree distribution,small-world phenomenon and degree correlation utilizing the complex network analysis algorithms has been studied.With experimental results showing for this network the existence of deviations from power-laws at the degree distribution level,the effective diameter being short,the nodes’ degrees being irrelevant,with the non-hierarchical intrinsic nature proved.

参考文献/References:

[1] Benevenuto F,Magno G,Rodrigues T,et al.Detecting spammers on twitter [C].Washington:IEEE Press,2010.
[2] BackstromL,Boldi P,Rosa M,et al.Four degrees of separation [J/OL].
[2012-10-16].http:∥arxiv.org/abs/1111.4570.
[3] Jiang Jing,Wilson C,Wang Xiao,et al.Understanding latent interactions in online social networks [EB/OL].
[2012-10-17].http:∥conferences.sigcomm.org/imc/2010/papers/p369.pdf.
[4] Java A,Song Xiaodan,Finin T,et al.Why we twitter:understanding microblogging usage and communities [EB/OL].[2012-11-12].
[5] Kwak H,Lee C,Park H,et al.What is Twitter,a social network or a news media?[EB/OL].
[2012-11-10].http:∥wenku.baidu.com/view/faeeef3f0912a2161479298e.html.
[6] Barabási A L,Albert R.Emergence of scaling in random networks [J].Science,1999,286(5439):509-512.
[7] Clauset A,Shalizi C R,Newman M E J.Power-law distributions in empirical data [J].Siam Review,2009,51(4):661-703.
[8] Newman M E J.Power laws,Pareto distributions and Zipf’s law [J].Contemporary Physics,2005,46(5):323-351.
[9] Ugander J,Karrer B,Backstrom L,et al.The anatomy of the facebook social graph [EB/OL].
[2012-10-17].
[10] Tauro S L,Palmer C,Siganos G,et al.A simple conceptual model for the Internet topology [EB/OL].
[2012-10-17].http:∥www.cs.ucr.edu/~michalis/PAPERS/jellyfish-GI.pdf.
[11] Chun H,Kwak H,Eom Y H,et al.Comparison of online social relations in volume vs interaction:a case study of cyworld [EB/OL].
[2012-10-17].http:∥dl.acm.org/citation.cfm?id=1452528.
[12] Ghosh R,Lerman K.Predicting influential users in online social networks [EB/OL].
[2012-10-17].http:∥arxiv.org/abs/1005.4882.
[13] Nicosia V,Criado R,Romance M,et al.Controlling centrality in complex networks [EB/OL].
[2012-10-17].http:∥arxiv.org/abs/1109.4521.
[14] Newman M E J.Assortative Mixing in Networks.Physical Review [J].Letters,2002,89(20):208701.
[15] Foster J G,Foster D V,Grassberger P,et al.Edge direction and the structure of networks [J].The National Academy of Sciences,2010,107(24):10815.
[16] Aggarwal C C.Social network data analytics [M].New York:Springer-Verlag Inc,2011:177-209.
[17] Chen,D.,L.Lü,et al.Identifying influential nodes in complex networks [J].Physica A:Statistical Mechanics and Its Applications,2012,391(4):1777-1787.
[18] 张辉.浅谈新媒介环境下微博二级传播优势 [J].大观周刊,2011,521(13):109-110.
[19] 王愽,彭玉涛,罗超.基于模糊聚类广义回归补缀网络的网络入侵研究 [J].江西师范大学学报:自然科学版,2012,36(3):288-291.
[20] Feld S L.Why your friends have more friends than you do [M].Chicago:The University of Chicago Press,1991,1464-1477.

备注/Memo

备注/Memo:
国家自然科学基金(61202337)
更新日期/Last Update: 1900-01-01