[1]任磊,王文武.一类变系数微分代数方程的数值解[J].江西师范大学学报(自然科学版),2014,(01):54-57.
 REN Lei,WANG Wen-wu.The Numerical Treatment of Time Varying Differential Algebraic Equations[J].Journal of Jiangxi Normal University:Natural Science Edition,2014,(01):54-57.
点击复制

一类变系数微分代数方程的数值解()
分享到:

《江西师范大学学报》(自然科学版)[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2014年01期
页码:
54-57
栏目:
出版日期:
2014-02-28

文章信息/Info

Title:
The Numerical Treatment of Time Varying Differential Algebraic Equations
作者:
任磊;王文武
商丘师范学院数学系,河南商丘,476000
Author(s):
REN Lei;WANG Wen-wu
关键词:
变系数微分代数方程Drazin逆有限算法Radau ⅡA
Keywords:
time varying differential algebraic equationsDrazin inverseinfinite algorithmRadau ⅡA
分类号:
O241.81
文献标志码:
A
摘要:
讨论了变系数微分代数方程的数值解.首先给出变系数微分代数方程的系数矩阵Drazin逆的求法,然后研究其差分格式上的数值解,最后利用Drazin逆的方法和隐式RK方法对一类变系数微分代数方程进行了研究,并给出了相应的数值试验,结果表明Drazin逆的求解效果较好,但求解过程比较复杂.
Abstract:
The rationalized Haar functions are used to solve the solution of fractional order Fredholm integral equation of the second kind.The integral equation can be reduced to a system of algebraic equations by using rationalized Haar wavelet and collection method.Finally,the numerical solution of fractional integral equation with exact solution and the numerical solutions using Haar wavelet are compared.The result shows that the algorithm has high accuracy.

参考文献/References:

[1] Lepik U.Solving fractional integral equations by the Haar wavelet method [J].Appl Math Compute,2009,214:468-478.
[2] Habibollah Saeedi,Nasibeh Mollahasani.An operation Haar wavelet method for solving fractional Volterraequations [J].Int J Appl Math Compute Sic,2011,21(3):535-547.
[3] Li Yuanlu,Zhao Weiwei.Haar wavelet operational matrix of fractional order integration and its applications in solving the fractional order differential equations [J].Appl Math Comput,2010,216:2276-2285.
[4] Li Y.Solving a nonlinear fractional differential equation using Chebyshev wavelets [J].Commun Nonlinear Sci Numer Simul,2010,15:2284-2292..
[5] Saeedi H.A CAS wavelet method for solving nonlinear Fredholm integro-differential equation of fractional order [J].Commun Nonlinear Sci Numer Simulat,2011,16:1154-1163.
[6] Zhu Li,Fan Qibin.Solving fractional nonlinear Fredholm Integra-differential equations by the second kind Chebyshev wavelet [J].Commun Nonlinear Sci Numer Simulat,2012,17:2333-2341.
[7] Maleknejad K,Mirzaee F.Using rationalized Haar wavelet for solving linear integral equations [J].Applied Mathematics and Computation,2005,160:579-587.
[8] Maleknejad K,Mirzaee F,Abbasbandy S.Solving linear integro-differential equations system by using Rationalized Haar functions method [J].Appl Math Comput,2004,155:317-328.
[9] Reihanimh Abadiz.Rationalized Haar function method for solving Fredholm and Volterra integral equations [J].Journal of Computational and Applied Mathematics,2007,20:12-20.
[10] Ohkita M,Kobayashi Y.An application of rationalized Haar functions to solution of linear differential equations [J].IEEE Trans Circuit Syst,1986,9:853-862.

备注/Memo

备注/Memo:
河南省科技厅(132300410391)
更新日期/Last Update: 1900-01-01